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1. Introduction

The goal of this presentation is to review recent progreseeming the design of feedback con-
trol strategies for bluff body wake flows based on point w&$. This investigation grows out
of a long—term research effort which seeks to integrateroige methods of modern control the-
ory and computational fluid dynamics. We will use a comboratf mathematical analysis and
numerical computation to study properties of a family of floantrol algorithms and will focus
on circular cylinder wake flows which are canonical exammgfemassively separated flows. In
principle, application of the linear control theory to ®sis described by partial differential equa-
tions (PDESs) is relatively well understood, however, inghige even the design of “simple” linear
control strategies, such as the Linear Quadratic Regu(&t@R), may result in computationally
intractable problems when applied to discretizations efftil Navier—Stokes system [1]. There-
fore, in order to facilitate synthesis and application oflswontrol strategies, it is necessary to
introduce reduced—order models of the Navier—Stokes syated in this investigation we study
one such family of reduced—order models.

2. The Foppl System as Reduced—Order Model

In this research we are interested in stabilizing the stesgdymetric flow past a circular cylinder

which is known to become unstable fee> 46. In order to simplify the mathematical description,
we will assume that the system satisfies the steady—stage &gliations which can be written in
the form

A=) in Q
g=0 on 0Q, D
l‘IJ—>U°°y for |(X>y)| — 0,

whereW is the streamfunction and the right—-hand side functide a priori undetermined. Tak-
ing this function in the formf (W) = —wH (Y — Yy), whereH(-) is the Heaviside function, we
obtain a family of Prandtl-Batchelor flows [3], charactedzy constant—vorticity vortex patches
embedded in irrotational flow, as solutions of problem (13s@ming that the circulation of every
vortex region is fixed results in a one—parameter family dfitsons of (1) depending on the area
of the vortex region [3] (see Fig. 1a). Taking the limit of th@nishing vortex area reduces the
Prandtl-Bachelor flow family to an equilibrium point vortexstem discovered by Foppl [2] in
1913 (Fig. 1b). Analysis of the linear stability of the Fomguilibrium shows that it is unsta-
ble and, in addition to a linearly growing mode associateith &ireal positive eigenvalue, is also
characterized by a decaying mode associated with a realivegégenvalue and a neutrally stable
oscillatory mode associated with a conjugate pair of puraginary eigenvalues. These stability
properties make the Foppl system a feasible candidate redw@ced—order model of the onset of
the vortex shedding instability in bluff body wakes.
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Figure 1 (a) Boundaries of the vortex patches with different araas @nstant circulation ob-
tained as solutions of (1) and the limiting point vortex pbgystem (represented by a solid circle),
(b) schematic showing the location of the singularitieshim EOppl system with control represent-
ing the cylinder rotation.

3. Control Design

Our goal is to stabilize the steady symmetric wake flow regaméed, for the control design pur-
poses, by the unstable equilibrium of the Foppl system adaced—order model. The flow actua-
tion (system input) has the form of the cylinder rotation @&kpresented in the FOppl system as

a vortex with the circulatiof c = 'c(t) located inside the obstacle, whereas the system output has
the form of velocity measuremenysat the flow centerline. Using € R* to denote the perturba-
tion variables (i.e., perturbations of the vortex posis@round the equilibrium), the linearization

of the Foppl system around this equilibrium can be expekgs¢he canonical state—space repre-
sentation as [4]

d
ax_AerBI'C, (2a)
y =Cx+Drl¢, (2b)

whereA, B, C andD are suitable matrices. We seek to determine the controkifettdbackorm
Mc(t) = —Kx(t), so that it will stabilize model equation (2a) and at the séime will minimize
the cost functional/(I'c) = 3 [5°(y" Qy + I'cRIc)dt, whereR > 0 andQ is a suitably chosen
positive—definite weighing matrix. Before we can devise atad algorithm, we need to verify
that model system (2) has an appropriate internal structusgas shown in [4] that problem (2)
is fully observable however, it is notontrollable Performing the Kalman decomposition in or-
der to transform system (2) to the minimal representatiegn, one which is both observable and
controllable, shows that the neutrally stable oscillatorydes are in fact not controllable, so the
whole system remainstabilizable The stabilization problem is solved by constructing adire
guadratic—Gaussian (LQG) compensator [4] and in Fig. 2ahee/ghe results concerning LQG
stabilization of the Foppl equilibrium. We note that thetea trajectory is indeed stabilized, how-
ever, instead of returning to the equilibrium, the trajegt@ands on a circular orbit circumscribing
the equilibrium. The same LQG approach was then appliedatultation of the circular cylinder
wake atRe= 75 (Fig. 2b). We observe that, while the far wake is remakagimmetrized, the
level of oscillations in the near wake region is in fact irased. Properties of the Foppl system
responsible for the behavior observed in these two casaswgtigated next.

4. Center Manifold Analysis

It is well-known that, if a linearization of a nonlinear syst possesses pairs of purely imaginary
eigenvalues, then such linearization may not provide c@iv information about stability of the
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Figure 2 (a) Trajectories of the Foppl vortices with the LQG cohtfb) instantaneous vorticity
field in a cylinder wake aRe= 75 with the LQG control.

original nonlinear system and higher—order informatiorsiae analyzed. To this end we consider
the minimal representation of system (2) with the feedbamkrol 'c = —Kx

d H _ [An 0 } H . [gl(i,n)} @)
dt [n 0 Axn-BK||n| [02&n)]’

whereg andn represent, respectively, the controllable and uncorbtdl parts of the state of the

Foppl system with the feedback control and the marix has purely imaginary eigenvalues only.
In [5] we proved the following two theorems in regard to syst):

Theorem 1. Systen{3) possesses an invariant (center) manifold given by the ifomnt=@(§) =
0.

Theorem 2. For sufficiently small initial data the reduced system

d
&E = AllE + gl(zy 0)7 (4)
obtained via an invariant reduction of syst€8), possesses stable periodic orbits.

The significance of these results concerning the observadvilr of the Foppl system under
feedback control is as follows. Theorem 1 implies that thetrmdlable and uncontrollable parts
of the state are essentially uncoupled. Therefore, as sedheacontrol stabilizes the unstable
mode, the system trajectory converges to the center mdr§fel 0. Since this manifold is in fact
spanned by the uncontrollable modes, the dynamics on thisfold is unaffected by the flow
actuation and, as asserted by Theorem 2, stable perioditatiens are observed. We conclude
that the presence of this center manifold is clearly an uralgle effect from the control point of
view. Next we attempt to modify the internal structure of #igppl system so as to disrupt the
center manifold.

5. Beyond the Classical Bppl System

In Section 2. we argued that the classical Foppl systenesepits an extreme member of the
Prandtl-Batchelor family of vortex flows. In [6] we showeditlit is in fact possible to construct
point vortex systems corresponding to the Prandtl-Batctkdws with finite area vortex patches.
This can be accomplished by adding higher—order terms septig corrections due to the finite
size of the vortex patch to the classical Foppl system. Amvshin [6], the equilibria of such
higher—order Foppl systems form loci parametrized by tlea @f the vortex patch and the trun-
cation order (Fig. 3a). In addition to a range of propertigeriesting from the mathematical point
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Figure 3 (a) Loci of the higher—order equilibria parametrized bg tirea of the vortex region
in the Prandtl-Batchelor solution for different truncatiorders (the dotted line represents the
boundary of a vortex region, whereas the thick solid liner@epnts the obstacle), (b) trajectories
of the state of (solid line) the classical and (dotted linighkr—order Foppl system stabilized with
an LQG compensator in the neighborhood of the corresporetijugibrium solutions.

of view, such higher—order Foppl systems have an impodhatacteristic relevant for our control
applications, namely, the uncontrollable modes are novoraptially, rather than just neutrally,
stable, This means that a center manifold is no longer ptesehis new reduced—order model
and, as shown in Fig. 3b, the LQG compensator is now able tpletaty stabilize the equilib-
rium. Control-theoretic advantages of the higher—ordgp#F Systems as reduced—order models
are being now investigated. It is anticipated that corgrsldesigned based on such higher—order
systems will be characterized by more robust performargme@ally when applied to actual sys-
tems.
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