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Abstract. We present large-eddy simulation (LES) results of the streamwise-periodic hill channel
configuration, which is a standard test case for massively separated flows. The Reynolds number
(computed with the hill height, the bulk mass flux through the cross-section above the hill crest
and the dynamic viscosity at the wall) is chosen as 2800, in accordance with recent DNS data from
Peller & Manhart [4] for incompressible flow. The Mach number was varied between Ma = 0.2
and Ma = 2.5. The numerical simulation code NSMB discretises the compressible Navier-Stokes
equations with the finite-volume method on a deliberately-chosen coarse structured mesh. The
subgrid-scales are accounted for by the well-proven approximate deconvolution model (ADM).
This investigation is an extension of our previous work on this configuration, which focused on the
validation of our simulation approach at nearly incompressible flow conditions. In this first part
of a two-part contribution [8], the scope lies primarily on the effect of compressibility, especially
on the separation characteristics and the flow conditions at the walls. To this end, we introduce
a new measure that quantifies reverse flow at the walls and study the distributions of the friction
and pressure coefficients. Unlike other investigations of this flow case, we also include the upper
wall in this study. Furthermore, we describe the dependence of the turbulence and separation
characteristics on the Mach number.
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1. Introduction

The streamwise-periodic hill channel is a canonical test case for separated flow from
curved surfaces. It is based on experiments of Almeida et al. [1], with some slight
geometric modifications. Figure 1(a) shows a lateral view of the configuration. The
bottom and the top of the channel are constrained by solid walls. Periodic boundary
conditions are employed in the streamwise (x) and spanwise (y) directions, while at
the top and bottom walls no-slip boundary conditions are enforced. All lengths
are made dimensionless with the hill height h, henceforth omitted for brevity. The
computational domain extends over Lx = 9 in the streamwise direction, Lz = 3.036
in the vertical direction, and Ly = 4.5 in the spanwise direction.
Although the structure of the mean flow field depends on the specific flow conditions,
the flow typically separates near the hill top and reattaches somewhere in the flat
region between the hills. Due to the highly unsteady character of the separation
process, the resulting separation bubble can be recognised only in the mean flow
field [9]. An animation of the instantaneous flow fields reveals a periodic but irregular
shedding of smaller vortices that are convected downstream. These highly unsteady
flow properties lead to long sampling times (about 40-50 flow-through times) in
order to obtain sufficiently converged statistics.
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Figure 1. (a) Sketch of the periodic-hill channel and (b) computational mesh used for the
LES. The dotted line in (a) denotes the edge of the mean flow recirculation zone with
clockwise orientation.

The first incompressible DNS of the configuration at the present Reynolds number
of 2800 was conducted recently by Peller & Manhart [4]. An extensive study of the
flow physics in the streamwise-periodic hill channel was presented in the LES-based
study [2]. This publication, as well as the preceding work that it summarises [5, 6],
is based on an approximately four times higher Reynolds number of 10595.
In our previous paper on the periodic-hill channel [9], we compared results of our
low-Mach number LES to the above-mentioned incompressible reference data at
both Reynolds numbers. The work was aimed at the assessment and validation of
our simulation approach using the approximate-deconvolution subgrid-scale model
(ADM) for unsteady separated flows. Despite our deliberately-chosen coarse reso-
lution and our compressible simulation method, we found our results to be in good
agreement with the comparison data for most quantities. Most notably, the hard-
to-predict separation and reattachment locations of the mean flow and the mean
velocity profiles were found to be in excellent agreement. In the present work, we
extend the previous study to higher Mach numbers up to the supersonic regime. For
reasons of computational economy, we restricted our computations to the lower of
the two Reynolds numbers (Re = 2800). The focus lies on the physical aspects of
the flow, especially the Mach number dependence of the separation characteristics
and the flow properties at both walls.
The parameter study was conducted by performing simulations with successively
increasing Mach number, thereby using an instantaneous flow field of one simulation
as an initial condition for the simulation at the next higher Mach number. Details
about the present computational setup, which is the same as in our previous study,
can be found in [9]. Table 1 summarises the key parameters and the mean separation
and reattachment locations of the present simulations and the reference DNS.

2. Results

In the leftmost picture of figure 2(a), the mean (i. e., spanwise- and time-averaged)
streamwise velocity profiles at Ma = 0.2 are compared to incompressible DNS data of
Peller & Manhart [4]. Despite of the present coarse resolution, excellent agreement is
achieved. In our previous publication [9], this validation was extended, with similar
results, to other statistical quantities and important flow features such as separation
and reattachment locations. The left column of figure 2 also shows the contours of
the mean streamfunction for all five investigated Mach numbers. At Ma = 0.2 this
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Table 1. Calculation parameters, mesh dimensions, and separation/reattachment locations
of the present and reference simulations. The cross-sectional Reynolds number above the
hill crest is Re = 2800 in all cases.

Simulation Ma Nx × Ny × Nz Mio. Cells xsep xreatt

Peller & Manhart (DNS) [4] n/a 464 × 304 × 338 47.68 (=̂100%) 0.21 5.41

Present LES
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(e)

0.2

128 × 72 × 69 0.64 (=̂1.33%)

0.21 5.14
0.7 0.28 5.40
1.0 0.33 6.06
1.5 0.39 5.33
2.5 0.46 7.58

is characterised by a large recirculation region downstream of the hill, and a small
separation bubble at its windward foot. Additionally, at the leeward hill face a small
secondary separation bubble with opposite orientation is contained in the primary
recirculation zone. With increasing Mach numbers, the separation bubbles grow and
the reattachment point moves farther downstream. They merge for Ma > 1.5, and
one large recirculation region covers the lower wall between the hills. Additionally,
at the two supersonic Mach numbers the flow also separates at the upper wall due
to the presence of an extended region with a large adverse pressure gradient.

The primary reason for the growth and the downstream movement of the recircula-
tion zone with increasing Mach number is the inverse relationship between the Mach
number and the heat transfer coefficient, k ∼ 1/Ma2. With rising Mach number,
the heat transfer coefficient decreases, thus the increasing amount of heat generated
by dissipation in the turbulent flow is less easily transported out of the fluid body
through the isothermal walls. As a consequence, the fluid temperature rises. Since
the dynamic viscosity is directly dependent on the temperature, µ ∼ T 0.7, the in-
creased fluid temperature comes along with a higher fluid viscosity. The effect is
similar to reducing the Reynolds number of the flow, which is generally known to
result in a downstream movement of the separation and reattachment locations [9].

As apparent from visualisations of the instantaneous flow field, there is considerable
backflow along the walls at all times. To better quantify this phenomenon, we
analysed the time fraction at which the wall-parallel velocity just above the wall

u · twall is negative, i. e., r(x) =
∫ t0+∆T

t0
[1 − H(u(x, t) · twall)] dt/∆T (with the wall-

tangent vector in positive x direction twall and the Heaviside step function H).
The result is displayed in the second column of figure 2. At the lower wall, the
flow acceleration and the resulting very high velocities above the hill crest prevent
backflow, thus the backflow fraction is almost zero. Just downstream of the hill
crest, the flow separates and vortices are shed, yielding a sharply rising backflow
fraction with a peak of more than 70% backflow. This location lies just downstream
of the mean-flow separation point and exhibits the second-largest magnitude of
backflow along the bottom wall. Due to the secondary recirculation zone with
opposite orientation, which is embedded in the main separation bubble, the fraction
of backflow is decreasing rapidly by a considerable amount. The backflow rates
grow again at a slower rate downstream of the secondary separation region. For
most Mach numbers, a little local maximum appears in the strongly-curved region
at the leeside foot of the hill. Downstream of that dent, the fraction of backflow
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Figure 2. First column: contours of the mean streamfunction 〈ψ〉y,t ( positive values,
negative values, 〈ψ〉y,t ≡ 〈ψwall〉y,t) and, in plot (a), mean streamwise veloci-

ty profiles, present LES results, × incompressible DNS data [4]. Second column:
fraction of the spanwise-averaged backflow 〈r〉y at lower wall and upper wall.

Boundary of mean-flow separation region (shaded in grey), domain boundaries.
Third column: contours of the mean Lumley flatness parameter 〈F 〉y,t. (a) Ma = 0.2,
(b) Ma = 0.7, (c) Ma = 1.0, (d) Ma = 1.5, (e) Ma = 2.5.

is increasing again to a global maximum, which is located near the streamwise
coordinate of the centre of the primary mean-flow separation bubble. Downstream
of this maximum, the backflow ratio decreases moderately, until is reaches a plateau
around the mean-flow reattachment location. It remains between 40% and 50% in
the flow recovery region, until it grows again somewhat due to the small separation
bubble at the windward hill foot. Farther downstream, the flow accelerates strongly,
and the ratio of backflow sinks fast. Along the second half of the windward hill face
(z > 0.5), the backflow rate is negligible. An exception occurs for the two Mach
numbers Ma = 0.7 and 1.0, where the backflow ratio rises again upstream of the hill
crest. Also note the kink of the backflow ratio graph at the end of the curved region
of hill foot (x ≈ 8), which is potentially due to wall curvature effects.
At the upper wall, the backflow rates are negligible for the simulations without the
presence of a detached boundary layer, i. e., up to Ma = 1.0. Significant backflow is
only occurring in the range 3 ≤ x ≤ 6, which coincides with the location of the mean-
flow recirculation region for the two highest Mach numbers. Note that the backflow
decreases from Ma = 0.2 to 0.7, while it rises considerably by a factor of about two to
the next higher Mach number, Ma = 1.0. Additionally the curve changes its shape
slightly to a dual-peak form (with maxima at x ≈ 3 and 5, respectively) that gets
more distinct for the higher Mach numbers exhibiting a detached boundary layer.
For the two highest Mach numbers Ma = 1.5 and Ma = 2.5, a strong adverse pressure
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gradient causes the upper-wall boundary layer to detach, and a large recirculation
zone develops. This separation bubble leads to very high backflow rates of 70%-
80%, which are of the same magnitude as the values observed in the recirculation
region above the lower wall. The large backflow rates are observed primarily in the
streamwise range of the mean-flow separation region 3 ≤ x ≤ 7. However, while the
curve rises sharply from almost zero at the upstream edge of the recirculation region,
its decay back to very low values at the downstream end of the separation bubble
occurs much more gradually until above the upper half of the windward hill side
(8 ≤ x ≤ 9). Within the range of the recirculation region, the graph exhibits the
two-peak shape mentioned above. After a local maximum at the upstream edge of
the separation bubble, the backflow rates decrease somewhat, until they rise again
to a higher, global maximum in the second half of the detached boundary layer.
Since increasing Mach numbers lead to stronger pressure gradients, the boundary-
layer detachment and thus the upper-wall recirculation region intensifies, resulting in
generally higher backflow rates. It is surprising, however, that significant backflow
is already occurring in this region at very low Mach numbers such as Ma = 0.2.
This leads to the conclusion that already at this Mach number, the adverse pressure
gradient exerts a strong effect on the upper-wall boundary layer.

Lumley’s flatness parameter F [3], displayed in the third column of figure 2, allows
for an analysis of the turbulence characteristics of the flow. While the observed
values of F reach levels that are very close to zero, i. e., two-dimensional turbulence,
the maxima of F (about 0.9 throughout all Mach numbers) lie considerably below the
value for three-dimensional turbulence, F = 1. This result is typical for channel flow
and can be explained by the nature of the flow configuration and the low Reynolds
number. The specific geometry, including the separated boundary-layer downstream
of the hill, as well as the influence of the upper and lower walls, does not allow for
the development of truly three-dimensional isotropic turbulence. On the other hand,
two-dimensional turbulence characteristics are enforced in wall-bounded turbulence
by the presence of solid walls. For the three lower Mach numbers Ma = 0.2, 0.7
and 1.0, high values of F are present in the whole upper channel part between the
upper-wall boundary layer and the shear layer (z > 1), and in the lower channel
part (z < 1) between the lower-wall boundary layer and the shear layer. The
highest flatness values with almost three-dimensional turbulence occur in distinct
elongated patches in the high-velocity region above the leeward hill face, close to
the upper wall. With increasing Mach number, this area grows in streamwise size
and thickens somewhat, but in the major part of the remaining channel, the level of
F is considerably lower. This is in contrast to the result for the two highest Mach
numbers Ma = 1.5 and 2.5, where the area with the highest values of F (and thus
almost three-dimensional turbulence structure) covers almost the complete cross-
section between the shear layer and the upper-wall boundary layer, and is only
interrupted by its separation and the upward-extending influence of the shear layer
in the middle of the channel (at x ≈ 4.5).

As expected, the values of F are very small in the boundary layers at the lower and
upper walls for all Mach numbers. In Figures (a)-(c), the thickening of the upper-
wall boundary layer due to the adverse pressure gradient can be well observed. For
the two highest Mach numbers Ma = 1.5 and 2.5 the detached upper-wall boundary
layer is evident from the considerably thicker region with two-dimensional turbulence
for 3 ≤ x ≤ 7. Near the lower wall, two-dimensional turbulence is prevalent in the
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shear layer downstream of the hill crest, whose characteristics are only gradually
displaced by that of the surrounding flow. With increasing Mach number, this region
of two-dimensional turbulence extends farther downstream and gains in thickness.
At the highest Mach number, the turbulence is primarily two-dimensional in the
major part of the domain between the hills (z < 1), an exception being the core of
the mean-flow recirculation region above the leeward hill foot (x ≈ 1.75).
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Figure 3. (a)/(c) Mean pressure coefficient 〈cp〉y,t and (b)/(d) mean friction coefficient
〈cf 〉y,t at top/bottom wall. Ma = 0.2, • Ma = 0.7, ◦ Ma = 1.0, × Ma =
1.5, ∗ Ma = 2.5, incompressible DNS data [4]. Magnified areas in (d).

In figure 3 we present the streamwise development of the mean pressure and friction
coefficients along both walls for the five investigated Mach numbers. Additionally,
at the lower wall DNS data from [4] is displayed for comparison. (For the upper
wall, no data is available from literature.) Note that the pressure coefficient has
been centred by subtracting its streamwise mean value, so that the mean pressure
coefficient vanish. This allows for a comparison with the incompressible reference
data, where the pressure coefficient is usually presented in this manner due to the
lack of a reference pressure.
For the mean pressure coefficient cp at the lower wall in figure (c), our Ma = 0.2
simulation lies close to the incompressible reference data. The small deviations can
be attributed to effects of compressibility in conjunction with the normalisation
method [9]. Slightly upstream of the hill crest (x ≈ 8.75), the pressure reaches a
global minimum due to the very high velocities in this narrow cross-section. After
crossing the peak of the hill, the flow decelerates and the pressure rises. At x ≈ 0.25,
which roughly marks the beginning of the primary recirculation zone, the pressure
stagnates at a low level along the leeward hill face. At the beginning of the flat
region between the hills, the pressure rises again. In the first half of the plane
region, the increase is somewhat stronger. Around the mean reattachment location,
the slope of the curve gets flatter, and the pressure coefficient grows with an almost
constant gradient in the recovery region until the stagnation zone around x ≈ 7
at the windward hill foot. Here the pressure reaches its global maximum and falls
quickly along the windward hill face, where the flow is subject to strong acceleration.
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Within the high subsonic and transonic regimes, i. e., for Ma = 0.7 and 1.0, the
development of the pressure coefficient is very similar to the one at Ma = 0.2. Most
notably, the pressure gradient between the hills is larger, leading to more distinct
peaks. In the range 0 ≤ x ≤ 4.5, the development of the gradient of the pressure
coefficient is approximately the same for all three subsonic Mach numbers. (Dif-
ferences in magnitude of cp are primarily due to the chosen normalisation.) In the
downstream half of the channel (x ≥ 4.5), the curves for the two higher Mach num-
bers deviate notably from Ma = 0.2 by rising stronger. Furthermore, the maximum
pressure coefficient is reached slightly farther downstream, which coincides with the
downstream-movement of the stagnation region for increasing Mach numbers. Bet-
ween Ma = 0.7 and 1.0 the differences are marginal. A drastic change in form and
magnitude of the cp distribution can be observed in the supersonic regime. Here the
mean separation point lies considerably farther downstream. Furthermore, the ve-
locity maximum is not reached slightly upstream of the hill crest but near the mean
separation point. Consequently, the pressure minimum also occurs downstream of
the hill crest. Slightly farther down the hill, the wall is covered by the relatively
slowly moving fluid of the recirculation region, thus the pressure coefficient rises
sharply. For Ma = 1.5 a short plateau is recognisable which reaches roughly to the
hill foot. At Ma = 2.5, the pressure coefficient begins to rise immediately, albeit at
a weaker rate along the windward hill face. Downstream of x ≈ 2, the pressure coef-
ficient curves for both supersonic Mach numbers rise roughly parallel to each other
at a considerably steeper slope than for the three lower Mach numbers. As a result
of the strong influence of compressibility, the pressure maxima in the stagnation
region above at the windward foot of the hill lie much higher than in the subsonic
and transonic regimes. As expected, the pressure coefficient maximum at Ma = 2.5
considerably surpasses the one at Ma = 1.5 and occurs slightly farther downstream.

The pressure coefficient cp at the flat upper wall of the configuration, depicted in
figure 3(a), generally exhibits smaller variations than at the lower wall, which are
however in the same order of magnitude. For the three lower Mach numbers its
distribution is quite regular. The appearance resembles a sinusoidal shape, with
the lower part of the curve occurring in the first channel half (0 ≤ x ≤ 4), and
the positive semi-oscillation appearing in the second channel half. The physical
explanation of this pattern lies in the effect of the contour of the lower wall on the
flow. The strong acceleration caused by the hill contraction causes a pressure drop
above the hill (i. e., for 7=̂− 2 ≤ x ≤ 2), with a minimum appearing approximately
at the location of the maximum velocity, e. g., at x ≈ 1 for Ma = 0.2. Downstream of
the hill the channel cross-section expands and the flow decelerates, resulting in rising
pressures. The maximum pressure is reached roughly vertically above the stagnation
zone at the foot of the hill. The following contraction of the channel yields increasing
velocities and falling pressures. While the curves of all three Mach numbers Ma =
0.2, 0.7 and 1.0 exhibit very similar shape, there are some minor differences. Of
course, there are generally larger pressure differences within the flow for the higher
Mach numbers due to compressibility. Therefore, their extremal values are higher.
Additionally, the locations of the maximum as well as the minimum values of cp move
downstream with rising Mach numbers. This is in agreement with our above findings,
where all characteristic locations such as separation and reattachment location move
downstream with increasing Mach number. It is however striking that all three
curves intersect in the same streamwise location of x ≈ 4.25, at cp ≈ 0 in the chosen
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normalisation. Note that the pressure drop takes place over a considerably shorter
streamwise length than the following pressure increase. This again correlates with
the contour of the lower wall, where the hill causing the flow acceleration extends
over a much shorter streamwise stretch than the flat region between the hills, where
the flow decelerates.

In the supersonic range, the separation of the boundary layer at the top wall yields
a more complex pressure coefficient distribution. Here also the previously observed
oscillating pattern appears, but the amplitudes of the minimum and maximum values
are even higher and about of the same magnitude for both Ma = 1.5 and 2.5.
Additionally, the pressure maxima occur farther downstream and well above the
windward hill face, at x ≈ 8 for Ma = 1.5 and at x ≈ 8.5 for Ma = 2.5, i. e.,
shortly above the hill crest. The pressure drop following the maximum extends
along the whole leeward hill face and is much steeper in the supersonic range than
observed for the three lower Mach numbers. Note that for Ma = 2.5, the slope of
the curve exhibits a kink at x ≈ 2, where the hill face bends into the flat region,
and the decrease of cp continues at a slightly steeper slope. This slight curvature
effect can be also observed for other mean quantities. In both supersonic cases, the
separation of the boundary layer is preceded by a sharp pressure rise approximately
0.5 hill heights upstream of the separation point, which is located at x ≈ 2.7 for
Ma = 1.5 and at x ≈ 3.25 for Ma = 2.5. Within the recirculation region, the
pressure first continues to rise at a lower rate. Roughly at the thickest part of the
separation bubble, the cp distribution steepens and rises until the maximum above
the hill is reached. For Ma = 2.5, the pressure maximum appears quite distinct and
exhibits small curvature, whereas for Ma = 1.5 and the lower Mach numbers the
curve around the maximum is rounder.

Strong compressibility effects, especially at the hill crest, are evident from the mean
friction coefficient cf at the lower wall in figure 3(d). Again our lowest Mach number
case reproduces the DNS data very well. After a sharp peak at x ≈ 8.5, i. e., still at
the windward side of the hill, where very high velocities occur, the friction coefficient
drops steeply until the hill crest. Here cf reaches a short plateau until the mean
separation point, where it drops slightly into the negative range. Shortly thereafter
it changes its sign again, revealing a confined secondary recirculation region with
opposite orientation embedded into the primary separation bubble. Downstream
thereof, cf remains quite constant at negative values close to zero until the foot of
the hill at x ≈ 2. At this point the friction coefficient drops further to its global
minimum at x ≈ 2.8, where it begins to rise slowly, leading to its sign reversal,
which marks the mean reattachment point at x ≈ 4.7. In the post-reattachment
zone, cf exhibits only small positive values, until it experiences a short dip into the
negative range at the windward hill foot (x ≈ 7.2). Here the flow stagnates, and
a small recirculation zone appears. The following strong flow acceleration can be
witnessed by the steep increase of the friction coefficient along the windward hill
face. The cf distribution does not change considerably over the whole range of Mach
numbers. With increasing Mach number, the peak of the friction coefficient rises
somewhat and wanders downstream. The short region with constant cf after the
hill crest occurs at a much higher level for the higher Mach numbers. At Ma = 1.5
and 2.5, a second short peak of cf at slightly lower values than their global maxima
is visible, before the friction coefficient drops strongly into the negative range. The
secondary separation bubble is also affected by the Mach number. It grows and
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moves downstream towards the foot of the hill for higher Mach numbers. In the
supersonic range, it appears much flatter but considerably more elongated, and
ranges over a large part of the lower hill face until it bends towards the flat region.
The dip of cf to lower negative values in the flat region downstream of the hill foot
gets less pronounced with higher Mach numbers. Instead, the reattachment points
move farther downstream. For Ma = 2.5, the friction coefficient remains negative
throughout the flat region (although it runs very close to zero at x ≈ 6), and the
primary recirculation zone covers the bottom walls between the hills. This results in
a more pronounced local minimum of cf at the stagnation region near the windward
hill foot. In the other simulations, there is a small separation bubble which grows
from Ma = 0.2 to 1.0 and appears again smaller for Ma = 1.5. However, the negative
values of cf in this region are quite similar for all those simulations.

The magnitude of the friction coefficient cf at the upper wall, see figure 3(b), lies
in the same range as on the lower wall. While for Mach numbers up to Ma = 1.0
the pressure coefficient distribution exhibited only minor differences, the friction
coefficient is subject to larger variations along the upper domain boundary. For
Ma = 0.2, cf is highest above the hill crest, where very high velocities occur. The
flow decelerates and cf sinks, as the channel and its “virtual contour” (the cross-
section bounded by the upper wall and the boundary of the mean-flow recirculation
zone) expand. The minimum friction coefficient, less than half of its maximum, is
reached roughly vertically above the mean reattachment location. In the following
flow acceleration, cf rises at approximately the same rate as it decreases before. The
friction coefficient at Ma = 0.7 follows the same general distribution as for Ma = 0.2,
but at a higher level. While the minimum values are similar, the maximum friction
coefficient lies considerably higher at Ma = 0.7. At Ma = 1.0 the peak is located
even higher and downstream of the hill crest, at x ≈ 0.5. The friction coefficient then
falls quite steep to a minimum at x ≈ 3, which lies significantly farther upstream
than for the lower Mach numbers, but still at a comparable magnitude. Farther
downstream cf is subject to a quite steady rise which steepens at the windward hill
foot. For the two supersonic Mach numbers, the adverse pressure gradient at the
upper wall is so large that the boundary layer separates. This results in a major
change of appearance in the distribution of the friction coefficient. At Ma = 1.5,
its maximum is reached approximately at the same position and magnitude as at
Ma = 1.0, slightly downstream of the hill crest. However, the immediate strong
drop occurring there is delayed until x ≈ 2. This coincides with the location where
the pressure coefficient reaches its minimum and is approximately 0.5 hill heights
upstream of the separation point, where the friction coefficient changes sign. Within
the recirculation zone, cf first remains close to zero and experiences a dip at x ≈ 4,
where the pressure gradient increases. The minimum friction coefficient is located at
x ≈ 5, at less than one fourth of the magnitude of the maximum. Downstream of this
location cf rises at relatively constant slope, except for a kink at x ≈ 7, which is also
visible for the lower Mach numbers. It is an effect of the beginning cross-sectional
contraction caused by the contour of the lower wall. The general appearance of the
upper-wall friction coefficient at Ma = 2.5 is similar to Ma = 1.5. However, its
maximum reaches only 3/4 of the previous value. On the other hand, the plateau of
the maximum is wider, so that the drop in cf preceding the separation region and
the recirculation zone itself occur about 0.5 farther downstream. Additionally the
extent of the recirculation zone is considerably longer and reaches until x ≈ 7.5.
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3. Conclusions

We extended our previous study of the streamwise-periodic hill channel configura-
tion at nearly incompressible flow conditions to Mach numbers up to Ma = 2.5.
The present series of large-eddy simulations was performed on a deliberately-chosen
coarse grid using the well-proven approximate deconvolution subgrid-scale model
with the finite-volume flow solver NSMB.
In this first paper of a two-part contribution [8], we investigate the Mach-number
dependence of the separation characteristics with an analysis of the mean stream-
function, and study the flow conditions at the walls in detail using distributions
of the mean pressure and friction coefficients. In contrast to previous works, we
also consider the flow behaviour at the top wall. We introduce a new quantity, the
backflow fraction r, to determine the time fraction of instantaneous backflow along
the walls. The turbulence structure is analysed using Lumley’s flatness parameter.
We are currently extending our research to more complex separated flows by study-
ing two configurations of a jet in crossflow, a generic case [7] and a case related to
film-cooling.
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approximations and subgrid-scale models in large eddy simulation of separated flow in a channel
with streamwise periodic constrictions. Int. J. Heat Fluid Flow, 24(2):157–180, 2003.

[7] J. Ziefle and L. Kleiser. Large-eddy simulation of a round jet in crossflow. In 36th AIAA Fluid
Dynamics Conference, San Francisco, USA, June 5–8 2006, 2006. AIAA Paper 2006-3370.

[8] J. Ziefle and L. Kleiser. Compressibility effects on turbulent separated flow in a streamwise-
periodic hill channel — part 2. In Notes on Numerical Fluid Mechanics and Multidisciplinary
Design. Second DESider Symposium on Hybrid RANS-LES Methods, Corfu, Greece, June
17/18 2007, Springer, 2007.

[9] J. Ziefle, S. Stolz, and L. Kleiser. Large-eddy simulation of separated flow in a channel with
streamwise-periodic constrictions. In 17th AIAA Computational Fluid Dynamics Conference,
Toronto, Canada, June 6–9, 2005. AIAA Paper 2005-5353.

10


