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Abstract. Three-dimensional direct numerical simulation (DNS) of shock-wave / laminar boundary layer
interaction (SWLBLI) is performed with for objective to show that a SWLBLI can exhibit self-sustained
low frequency oscillations and a three-dimensional flow when the interaction is high. A linearized global
stability analysis is carried out in order to find some characteristics observed in the DNS. This stability
analysis permits to show that the physical origin to the three-dimensionality of the flow results from the
existence of a three-dimensional stationary global instability.
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1. Introduction

The principal objective of this paper is to study some unsteady characteristics of an inter-
action between an incident oblique shock wave impinging on a laminar boundary layer
developing on a flat plate. More precisely, this paper shows that some unsteadiness, in
particular the low frequency unsteadiness, originate in a supercritical Hopf bifurcation
related to the dynamics of the separated boundary layer. Various direct numerical simula-
tions were carried out of a shock-wave/laminar boundary-layer interaction, resulting from
the test case studied by Degrez et al. (1987). Three-dimensional unsteady Navier-Stokes
equations are numerically solved with an implicit dual time stepping for the temporal al-
gorithm and high order AUSMPW+ scheme for the spatial discretization. A parametric
study on the oblique shock-wave angle has been performed to characterize the unsteady
behaviour onset. These numerical simulations have shown that starting from the incident
shock angle and the spanwise extension, the flow becomes three-dimensional and un-
steady. A linearized global stability analysis is carried out in order to specify and to find
some characteristics observed in the direct numerical simulation. This stability analysis
permits to show that the physical origin generating the three-dimensional characters of
the flow results from the existence of a three-dimensional stationary global instability.

2. Physical Configurations

In the following, only shock wave / laminar boundary layer interaction on flate-plate has
been investigated. The test case considered has been experimentally and numerically stud-
ied by Degrez et al. [2]. The free-stream inflow Mach number is 2.15 for the numerical
simulation. The Reynolds number based on the distance X, between the plate leading
edge and the shock impingement point is 10°. The shock angle with respect to the hori-
zontal is equal to # = 30.8°, which corresponds to a shock generator angle of 3.75°. This
dataset takes into account confinement, 3D effects and measurement approximations; it
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Parameter Value

Freestream Mach number My =2.15
Interaction length X, =8x10"2m
Freestream Reynolds number | Re=10°

Incident shock angle 6 = [30.8%;33°]
Spanwise length L, =10.1;3]
Prandtl number Pr=0.72

Ratio of specific heats vy=14

Table 1. Flow parameters for the SWBLI.

is not strictly the same as the experimental free-stream conditions (see [2] for more de-
tails). At this incidence angle, Degrez et al. indicate that the flow remains stationary and
two-dimensional upstream, downstream and in the interaction. Furthermore it remains
laminar at least until the end of the measurement zone. Table 1 gives the different physi-
cal parameters.

To demonstrate that the low frequency behaviour observed in some SWBLI configu-
rations can be linked to the intrinsic dynamics of the detached zone induced by the in-
teraction, independently of the turbulent boundary layer characteristics, the evolution of
an incident shock wave impinging a laminar boundary layer developing over a flat plate
when the incident shock angle is gradually increased. The free-stream inflow Mach num-
ber and the global Reynolds number remain unchanged. The evolution of the SWBLI
when the incident shock angle increases is a very complex problem. Indeed, for a par-
ticular value of the angle 6, the flow becomes transitional in the interaction zone. This
transitional state will probably modify substantially the topology and the dynamics of the
interaction zone. In addition, no unsteady disturbance, of convective instability type, is
introduced at the upstream end of the computational domain in order not to start possi-
ble instabilities of convective nature which could mask and/or modify the existence of a
global instability. Three-dimensional numerical simulations will be carried out without
taking into account the transitional character of SWBLI. Considering these assumptions,
these present computations are meant to show that a SWBLI can become unsteady without
taking into account the turbulent character of the flow. In this scenario, the unsteadiness
onset is directly linked to the intrinsic dynamics of the detached zone and quickly leads
toward a three-dimensional and unsteady flow.

3. Computational Domain and Boundary Conditions

The coordinates are non-dimensionalized by the interaction length X,;. The geometry
of the 3D domain is D = [0.2;2.3] x [0;0.94] x [0, L] with 600 x 180 x 60 points.
The grid is uniform in the streamwise and spanwise directions and geometrical in the
normal direction. The transverse direction L, lies between 0.1 and 3 with a number of
planes ranging between 40 and 60 planes. The 3D dimensionless mesh spacing is equal
to Ax = 3 x 1073, Ay = 7.8 x 107° at the wall and from Az = 1.05 x 1072 to
Az = 1.66 x 1072. The whole of the numerical parameters necessary to the numerical
simulation is gathered in table 2.

The steady two-dimensional Navier-Stokes solution is imposed at the inflow (z = 0.2).
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Parameter Value

(Ng, Ny, N) (600, 180, 60)
(Az, (Ay)¥™ Az) | (3 x 1073, 7.8 x 107°, 1.66 x 1072)
Geometrical ratiog | ¢ = 1.02

Lins Lsponges Lout 0.2, 2,23
Y € [0, Ymaz) y € [0;0.94]
z €10, L,] z € [0;1]
dual CFL 50

physical CFL 6

time step 6.82 x 1076

Table 2. Computational parameters for the SWBLI.

This latter is repeated in the spanwise direction. The inflow boundary condition is thus
homogeneous according to z. At the outflow and at the upper boundary, extrapolations are
used as boundary conditions for the conservative variables. The flat-plate is assumed to
be an adiabatic wall where the velocity vector is zero (no-slip condition); pressure is also
extrapolated from the values just above the plate. A sponge zone is imposed from x = 2
to x = 2.3. At the wall, the simulation uses viscous conditions for the velocities and
a constant temperature condition, and it computes density from the continuity equation.
In spanwise direction, the solution can be characterized as a neutral oscillation, which is
periodic at its boundaries. These boundary conditions are classically used in direct nu-
merical simulation but will have important consequences on the results analyzed in this
study. Indeed, in the case of a flow that naturally produces 3D structures, the dimension
L, given to the domain in the z-direction will force the wavelength of the spanwise struc-
tures. Therefore, the spanwise dimension should ideally be as large as possible to let 3D
instabilities appear spontaneously. The present SWBLI study is focused on low frequency
phenomena with corresponding large wavelengths. It was therefore decided to consider
L. as a parameter rather than a fixed input data; for all the 3D computations a parametric
study on L, is needed. The computational parameters are reported in table 2.

4. Direct Numerical Simulations

4.1. NUMERICAL METHOD

The governing equations are solved using a fifth-order-accurate AUSMPW+ scheme for
space discretization initially developed by [3]. High-accuracy of the inviscid numerical
fluxes is ensured through the use of a fifth-order MUSCL reconstruction of the primitive
variables vector (p,u, v, w, p)t. No limiter is used to cross the shock. A time-accurate
approximate solution of governing equations is obtained using the following implicit
second-order linear multi-step method. In order to efficiently solve the implicit system,
we make use of a dual time technique.
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Figure 1. Left: flow organization according to 6 and L., right: the amplitude of the oscillations
of w as a function of 8. e : Numerical simulations, line : A,, ~ v/8 — 31.7 for L, = 0.8.

4.2. DIRECT NUMERICAL SIMULATIONS RESULTS

Many computations were carried out for various values of the incident shock angle 6 €
[30.8°; 34°] and spanwise length L, € [0.1; 3]. In agreement with the experimental results
of Degrez, for § = 30.8° and all L, the solution obtained is two-dimensional and steady.
When the incident shock angle is greater, for the same flow conditions (Re, M), the flow
is destabilized towards a complex space-time dynamical state. When 31.7° < 6 < 32.8°,
the two-dimensional flow is conditionally stable with respect to the spanwise length L,.
Indeed, there are two critical spanwise lengths, L., (0) and L., (¢), where the flow bi-
furcates. If L., (0) < L. < L., (¢), the SWBLI bifurcates towards a three-dimensional
and stationary asymptotic state. If L, > L, (0), the asymptotic state corresponds to a
three-dimensional and unsteady flow. When 6 > 32.7°, a three-dimensional and unsteady
flow is directly reached. Fig. 1-left synthesizes the results obtained. In order to character-
ize this bifurcation, an amplitude parameter is defined as A,, = max(w(t)) — min(w(t)),
where max (w(t)) and min (w(t)) are the maximum and the minimum of the spanwise
velocity component, w(t), respectively. Figure 1-right shows the amplitude of the oscilla-
tions of w in a particular point in the SWBLI for the established flow and for L., = 0.8. As
shows in figures 2 (a)-(d), when the incident shock angle increases, the SWBLI becomes
gradually three-dimensional. This three-dimensionality, for all the configurations studied
in this paper, remains confined in the interaction zone and more precisely in the separated
zone. Figure 3 presents, in given point (g, yo, z0) = (1.1,2 x 1072,0.4) the time flow
evolution of the spanwise velocity component in log scale. This run has been initialized
by two-dimensional solution. After a short transient state (before point B), the amplitude
of spanwise velocity component increases exponentially (linear evolution). When this
amplitude reaches a finite amplitude a nonlinear saturation takes place ( point C). From
point C to point E, the spanwise velocity amplitude remains constant. When ¢ > 60 ms,
the Hopf bifurcation, previously described appears. This characteristic is observed in all
flow cases. The linear amplification rate observed in stage (B-C) is similar in any point of
the flow. These results suggest the existence of global instability mechanism. In next the
section, this characteristic will be demonstrated.
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Figure 2. Tso-lines of longitudinal velocity U (x, %) and streamlines for L, = 0.8. (a): § = 30.8°,
(b): 8 = 31.7°, (¢):0 = 32.0° and (d): 6 = 32.5°.
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Figure 3. Time evolution of | w | in logarithmic scale, L, = 0.8, § = 32°. Continuous line :
numerical simulation, Dashed line : linear amplification rate.
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Figure 4. Iso-lines of longitudinal velocity U (z, ) and streamlines. § = 32°, Re= 10°.

5. Global Instability Analysis

5.1. SMALL PERTURBATION TECHNIQUE

The analysis of flow stability is based on the compressible Navier-Stokes equations. The
instantaneous flow is written as the superposition of a basic flow and of a small pertur-
bation. All physical quantities ¢ (velocity, pressure, etc) are thus decomposed into an
unperturbed value and a fluctuating one:

q<x’ y? Z? t) :Q<x7 y? Z) +6q,<x7y7 Z? t) (1)

the unsteady three-dimensional infinitesimal perturbations, respectively.

5.2. BASE FLOW COMPUTATION

The availability of a two-dimensional basic state () will be known analytically only in
exceptional model flows; in the large majority of cases of industrial interest it must be
determined by numerical or experimental means. An accurate basic state is a prerequisite
for reliability of the instability results obtained; if numerical residuals exist in the basic
state (at O(1)) they will act as forcing terms in the O(e) disturbance equations and will
result in erroneous instability predictions. In laminar flows, current hardware capabilities
permit determining a basic state using 2D DNS at arbitrary high resolution. Thereafter,
the basic flow is obtained by the resolution of the two-dimensional equations of motion.
Fig. 4 shows the topology of the interaction zone for § = 32°. The separated zone
extends on L; ~ 1 and is only one piece (not secondary zone). After to compute the
basic flow solutions on computational domain using high resolution grid inaccessible to
the instability analysis, a cubic spline interpolation scheme is used to transpose the basic
flow solution on to the stability grid. The basic flow solutions are converged in time to
within a tolerance tol =| (gy-at — Gty) /9io 1< 1071%, where g is an integral measure of
the flow or the value of a local flow quantity.

5.3. PERTURBATION FORM

According to the base flow properties, the perturbation can be sought inhomogeneous
in 2 and y directions and periodic in z and ¢. When substituting (1) into the governing
equations, taking ¢ < 1 and linearizing about Q, any fluctuating quantity is written as

q(z,y,2,t) = q(z,y) exp [i (Bz — wt)] + c.c. 2)
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with q = (4, ,w,p,T)" representing the vector of two-dimensional complex amplitude
functions of the infinitesimal three-dimensional perturbations. In the present temporal
framework, (3 is taken to be a real wavenumber parameter describing an eigenmode in
the z-direction, while the complex eigenvalue w, and the associated eigenvectors q are
sought. The real part of the eigenvalue, Re(w), is related with the frequency of the global
eigenmode while the imaginary part represents its growth/damping rate; a positive value
of Im(w) indicates an exponential growth of the instability mode while Im(w) < 0 denotes
a decay of q in time.

5.4. THE COMPRESSIBLE BIGLOBAL EIGENVALUE PROBLEM

The linear disturbance equations of BiGlobal stability analysis are obtained at O(¢) by
substituting the decomposition (1) into the equations of motion, subtracting out the O(1)
basic flow terms and neglecting terms at O(g?). The system for the determination of the
eigenvalue and the associated eigenfunctions q in its most general form can be written as
the complex non-symmetric generalized eigenvalue problem

L(w;Re, f)q(z,y) =0 3)
with the linear operator £ written as
0? 0? 0? 0 0
L=M—+M,—+M My—+M;—+M
18x2+ 28y2+ 38x8y+ 48x+ 58y+ 0

where M are six (5 x 5) complex matrices which are functions of the base flow and of
the coefficients w and 3. The detail of operator L is presented in reference[5].

The number of boundary conditions depends on the operator order and the nature of the
partial derivative system. In the case of a compressible flow, the system is elliptic it is
thus necessary to write ten boundary conditions in each direction.

The computational domain used for the stability approach is: D = [xg; 2, X [0;y,] =
[280;400] x [0;60]. Various domains have been used with several values of z,, and y,, in
order to test the independence of the solution with respect to this domain as well as the in-
fluence of the boundary conditions. The field chosen above represents a good compromise
between the independence of the solution with respect to z,, and y,, and the computation
cost.

At x = z(, homogeneous Dirichlet boundary conditions applied on all disturbances are
used; this choice corresponds to disturbances generated within the examined basic flow
field: q = (u,0,w,p,T)(xo,y) = 0Vy € [0, y,]. At x = x,,, quadratic extrapolation of all
disturbance quantities, except for the pressure, from the interior of the integration domain
is performed. A compatibility relation on the fluctuating pressure gradient is applied at
the exit boundary: 9p/0x = x(x,). At the solid wall, viscous boundary conditions are
imposed on all disturbance velocity components © = © = w = 0 and the temperature
perturbation is set to zero 7" = (0. A compatibility condition is also imposed for the
pressure gradient 9p/dy = x(0) at the wall. Similar boundary conditions are imposed at

Y=1Yn.
5.5. NUMERICAL DISCRETIZATION

As the requirements for the computational grid of the LES simulation of the base flow are
not identical to those of the global stability computation, it is appropriate to interpolate



3D in shock-wave / laminar boundary layer interaction

the base flow on the stability grid. The principal difficulty is that this interpolation must
be sufficiently accurate so that the interpolation does not modify ’too much” the results
of the stability computation on this interpolated base flow. The interpolation is carried out
by the bi-cubic spline (NAG library) which guarantees a weak interpolation error.

Numerical methods of high formal order of accuracy are necessary since the coupled
spatial discretization in the numerical solution of the eigenvalue problem (3) cannot be
increased at will in order to achieve convergence; In the present analysis spectral col-
location has been used, based on the Chebychev Gauss-Lobatto (CGL) points for each
direction x and y. Because of the complexity of the basic flow (shock wave, separated
boundary layer, etc.), a single-domain algorithm cannot be used to accurately describe
the entire domain of the flow. In order to extend the BiGlobal stability analysis methodol-
ogy to complex geometries with a certain degree of regularity, the spectral multi-domain
algorithm is an obvious candidate. The Chebyshev intervals ((,£) = [—1; +1]? are trans-
formed to the computational domain D by use of the following mapping. In normal
y-direction, a mapping transformation for semi-infinite domains of boundary-layer type

is used .

ap(1l — Un a

= M, with ag = _Yabn_ and a, = 1+2—07
ar+¢§ Yn = 2Ya Yn
Yn, is the upper boundary domain and y, ~ do(X* = 1) is the coordinate such as in [0; y,]
there are fifty percent of the total number of points. In streamwise x-direction a spectral
multi-domain method is used
(za—20)(za—20)(1+¢)

(xd+xo—2a:a)<1+7<12(Ia710> C) ’

x € [xo; 4], =120+

" ( ) d+1072za)_
an(<¢
x € |xg;z,], x=u1;4+ xdmn—;, c=0.9,
(@) (wn =) (1)
T E T T T =, + SR .
[ [ n]7 r (xn—‘,—xr—me)(1+7(xi(_,_gr_;ib>—C)

where z4, x; and x, correspond respectively to the separation, interaction and reattach-
ment points of the basic flow. At the interface of the domains, continuity and derivability
of the disturbances are imposed.

Using the tools presented, the compressible BiGlobal linear eigenvalue problem (3) is
transformed into a discrete matrix eigenvalue problem:

[A(Re, 3) — wB(Re, 3)] Z = 0, 4)

where Z = {q;;}. A standard eigenvalue subroutine may now be used to compute the
eigenvalues. The first method to solve this algebraic system (4) is the QZ algorithm in
the absence of prior information on interesting regions of the parameter space. When
the interesting zone of the spectrum is identified, a less expensive algorithm, the Arnoldi
algorithm[4], is used to compute a part only of the spectrum as well as the associated
eigenfunctions.

6. Global linear stability results

The approach described in the preceding sections is employed to compute linear global
stability for various values of the incident shock wave angle from 6 = 31° to § = 33°.
Certain characteristics observed in the DNS are found. The critical shock angle beyond
which the flow becomes unstable is very close: 6. = 31.8° for the stability analysis and
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DNS STABILITY
Temporal amplification rate 3.71x 107 3.85x10~*
Wave length A = 27/ 0.8+2 0.798
Critical incident shock angle 6. | 31°7 31°8

Table 3. Comparison between DNS and global stability analysis.
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Figure 5. Left: Discretized linear stability spectrum: 8 = 32°, § = 7.86. Right: Temporal growth
rate Im(w) versus spanwise wavelength A = 27 /3 for various incident shock angle 6.

0. = 31.7° for the DNS. The eigenvalue spectra in the neighbourhood of w = 0 and for
0 = 32° is shown in figure 5-(a). At this set of parameters (Re, M and #), the most unsta-
ble mode is a three-dimensional stationary perturbation. The most unstable wavelength
for example for § = 32° is equal to 0.7987, which is very close to that observed in the
DNS which is rather around 0.8. The evolution of the amplification rate, Im(w), according
to the wavelength \ for various 6 values is presented on figure 5-(b). Table 3 gives some
comparative data between the direct numerical simulation and the analysis of stability.
Fig. 6 presents a comparison between the eigenfunction of the most unstable mode re-
sulting from the analysis of stability and the disturbance, in the linear regime, extracted
from the DNS. Most of the activity in all disturbance eigenfunctions is confined within
the boundary layer and to some degree in the vicinity of the reflected shock. The upstream
zone of SWTBLI is innocuous in agreement with DNS results. The neighbourhood of the
basic laminar flow separation point is weakly affected, as is clearly demonstrated by the
level of activity of all disturbance velocity components and pressure in that region.

7. Conclusions

Main objective of this paper was to highlight that an interaction between an oblique shock
wave impacting a laminar boundary layer developing on a flat plate could be the gener-
ating seat of a global instability of low frequency self-sustained oscillations. Therefore,
three-dimensional direct numerical simulations were carried out for a configuration close
to that of [2] where the incident shock angle is gradually increased.

These numerical simulations highlighted a complex process in the onset of unsteady dy-
namics when the angle of the incident shock increases. These numerical computations
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Figure 6. Left: normalized disturbance spanwise velocity for the most unstable global mode.
Right: perturbed spanwise velocity from the DNS in (x, y)-plan for t = 0.025 at z = 0.4.

have shown that before becoming unsteady, the SWBLI goes through a phase where the
flow becomes three-dimensional and stationary (for ¢ > 31.7°). However, this state is
unstable and can lead to a fully three-dimensional and unsteady flow. The final state is
reached more quickly when the angle of the incident shock is large.

When the spanwise dimension L, is large enough, the main spanwise wavelength of the
disturbance is close to A, = 0.8. In the interaction, the topology of the separated zone
is complex and mainly characterized by cells in the spanwise direction where the flow
is alternatively separated and reattached. This topologically complex zone exhibits an
unsteady self-sustained low frequency dynamics close to 700 Hz. For more details, see
[1, 5].

Linearized global stability analysis was carried out in order to find the physical origin
of the bifurcation generating the three-dimensional character of the flow. This analysis
highlighted that beyond a critical angle of the incident shock wave the flow becomes
linearly globally unstable, a stationary three-dimensional mode with characteristics very
close to those highlighted in the direct numerical simulation has been observed. The
wavelength, the temporal amplification rate as well as the main space characteristics of
the disturbance is found.
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