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Introduction

It has long been assumed that even relatively modest transverse oscillation can provide a sta-
bilising effect on the wake on two-dimensional cylindricalbodies, considerably delaying three-
dimensional transition. Experiments with an elongated cylinder by Berger (1967) showed that
suitable transverse oscillations extended the upper limitof the laminar shedding regime from the
non-oscillating limit until Reynolds numberRe = 300 ∼ 350. Koopman (1967) and Griffin
(1971) both performed forced oscillation experiments atRe ≤ 300 based on the assumption that a
laminar shedding regime persisted at this Reynolds number.The visualisations of vortex filaments
shed from an transversely oscillating cylinder by Koopman (1967) atRe = 200 show no spanwise
variation. Importantly, it has been established both experimentally and theoretically, that three-
dimensional wake transition for a stationary circular cylinder occurs atRe ≃ 190 (Williamson,
1996; Barkley & Henderson, 1996).

While the sequence of transitions leading to three-dimensional flow in a bluff body wake depends
on body geometry (Ryanet al. (2005), Thompsonet al. (2006)), it appears that the analogues of
the circular cylinder modes play a part in transition process. For a circular cylinder Williamson
(1996, 1988) produced very clear visualisations of the firsttwo transition modes - mode A and
B - and documented their spatio-temporal symmetry. These modes have a spanwise wavelength
of about 4 and 1 cylinder diameter, and undergo transition atRec ≃ 190 and 260, respectively.
Barkley & Henderson (1996) theoretically quantified aspects of these modes and observed signs
or a further quasi-periodic mode (QP), lying at an intermediate wavelength. Blackburn & Lopez
(2003) showed that this mode does not become unstable until much higher Reynolds numbers
(Re ≃ 377). It has been observed in two-dimensional simulations thatmoderate amplitude trans-
verse oscillation leads to a unsymmetrical ”P+S” state; i.e., for each shedding cycle the wake
consists of a pair of vortices on one side of the centerline and a single vortex on the other side
(Leontini et al., 2006; Blackburn & Henderson, 1999). Three-dimensional experiments tend not
to show the P+S state, but rather a mean 2P wake state is generally observed (Williamson &
Roshko, 1988).

Some of the open questions in this area have been: (1) How muchdoes finite-amplitude transverse
oscillation delay the onset of three-dimensional wake transition? (2) Is there a change in the
sequence of transitions leading to a fully three-dimensional wake and what effect does this have
on the transition to turbulent flow? (3) Why is the P+S mode notobserved experimentally, at least
for moderate Reynolds numbers, while the 2P mode is? (4) Evenpost-transition, does oscillation
produce a much more coherent (i.e. two-dimensional) wake? This paper will focus on these issues.
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Figure 1: Stability map for the wake state of a transversely oscillating cylinder.

Results

The two-dimensional flow state was determined, using a validated spectral-element flow/stability
code (Thompsonet al., 1996, 2001), as a function of Reynolds number and oscillation amplitude.
The stability map is shown in Figure 1. Over the range of parameters studied, the two-dimensional
wake can be in either the 2S state at lower amplitudes, or the P+S state at higher amplitudes.
At higher Reynolds numbers, the (two-dimensional) transition from 2S to P+S occurs at lower
amplitudes. Both base states become unstable to three-dimensional perturbations as the Reynolds
number is increased. There are 4 possible three-dimensional transitions depending on amplitude.
For low amplitude oscillation,|A| < 0.3, the wake become three-dimensionally unstable through
the subcritical mode A transition, as with a stationary cylinder. Between0.3 < |A| < 0.55, the first
transition is through the supercritical mode B. At slightlyhigher amplitudes,0.55 < A < 0.72, the
base flow is the P+S state prior to three-dimensional transition. Indeed for0.55 < A < 0.67, the
transition is via the 2S to P+S transition, which is immediately unstable three-dimensionally, Here,
a subharmonic mode, mode S, is responsible for the initial three-dimensional transition. At higher
amplitudes, the transition is through a different subharmonic mode, dubbed mode SS. Notably,
for an amplitude ofA = 0.55, the three-dimensional transition is delayed untilRe ≃ 280, thus
increasing the critical Reynolds number by approximately 90 over the non-oscillating case. A
more detailed picture of aspects of wake transition will be presented at the conference.
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