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Abstract. We have investigated the characteristics and the causes of the zigzag periodic motions
followed by solid bodies rising freely under the effect of buoyancy in liquid otherwise at rest.
The frequencies, amplitudes and relative phases of the body velocity and orientation have been
determined for a large range of parameters. Thanks to the determination of the body kinematics
and using the force and torque balances provided by the generalized Kirchhoff equations, we have
analyzed the dynamics of the body periodic motion.

1. Introduction

We have investigated the zigzag periodic motion followed by a solid body rising freely
under the effect of buoyancy in a liquid otherwise at rest. The central difficulty
is tied to the intrinsic coupling between the fluid and body motions, the body
displacement inducing a disturbance in the fluid which in turn imposes loads that
govern the body motion. Also the governing equations and the interpretation of the
hydrodynamic couplings between the various degrees of freedom become significantly
more complex as soon as the body exhibits some geometrical anisotropy and starts
rotating. Predicting the kinematics and the hydrodynamic loads on such freely-
moving bodies as a function of the characteristic parameters of the fluid /body system
is however of primary importance in many applications ranging from aerodynamics
[13], meteorology [12], sedimentology [19] to biomechanics [20] and dispersed two-
phase flows [14].

Freely rising or falling bodies in a fluid at rest can display various types of path and a
number of investigations has thus been devoted to identify these paths and the range
of parameters in which they occur. The canonical cases of a thin disk [21, 8] and that
of a two-dimensional flat plate [1, 11] have been worked out in detail. In both cases,
it turns out that, depending on the value of the control parameters, the motion
can be rectilinear, planar time-periodic either without lateral drift or mean rotation
(i.e. fluttering or zigzag) or with both of them (tumbling), quasi-periodic or even
fully chaotic. Most of these regimes were also identified and analyzed numerically
in the case of a solid sphere [10]. The kinematics and the dynamics of oblate gas
bubbles as well as the motion induced in the liquid have also been investigated in
detail experimentally [3, 18, 2] and by three-dimensional direct numerical simulations
[16, 17].

The bodies considered here are short-length axisymmetric solid cylinders (Figure 1)
of diameter d, thickness h and density p, chosen very close to the density py of the
liquid, ps/ps =~ 1. The rising motion of the bodies was followed by two travelling
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cameras; the time evolution of the position and orientation of the body was then
determined by image processing. The characteristics of the body translation and
rotation were investigated for aspect ratios, 2 < x = d/h < 20, and Reynolds
numbers, 100 < Re = V d/v < 300, V being the vertical mean rise velocity of the
body and v the kinematic viscosity of the liquid. For some representative situations,
the liquid motion induced by the body was characterized by either Particle Image
Velocimetry (PIV) and dye visualization (Figure 2). We here summarize the main
results of this study which are reported comprehensively in the papers [4]-[7].

Figure 1. Sketch of the body with the rotating axes (z,y,z) and definition of the compo-
nents of the velocity U and rotation rate €2 of the body.
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Figure 2. Velocity field for a steady case (x = 10, Re = 100): (a) freely rising body
(rectilinear path; obtained by PIV), (b) fixed body (by DNS). Three dye-visualizations of
the body wake: (c) rectilinear path (x = 10), (d) and (e) periodic path of a thick (x = 2)
and a thin (y = 10) body, respectively.

2. Onset of the periodic path

The transition from the rectilinear rise to the oscillatory motion occurs for a crit-
ical Reynolds number Re. that depends on the body aspect ratio x. As shown
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in Figure 3 (symbols), Re. first decreases when x increases, but then increases
for 5 < x < 10 and eventually becomes nearly independent of x for thin bodies
(x > 10). Since the periodic path is synchronized with the shedding of vortices,
we have investigated the role of the wake instability on the body motion. We have
therefore performed direct numerical simulations of the flow around fixed bodies of
same shape and PIV measurements of the flow surrounding the freely-moving bod-
ies. For all aspect ratios, the wake of the fixed body looses its axial symmetry above
a critical Reynolds number Re.; (plain line in Figure 3) and becomes unsteady at
Rec, > Reg (dotted line). Both Re. and Re. decrease when the aspect ratio in-
creases. For a Reynolds number Re smaller than Re.;, the numerical result for the
flow around a fixed body corresponds to the PIV measurements of the flow around
the rectilinearly-rising body; in particular, the maximum of the reverse velocity V;
in the recirculation region, which characterizes the strength of wake effects, is the
same. This velocity was shown to be an increasing function of the aspect ratio.
Introducing the Reynolds number, Re* = V; d/v, which is related to Re through the
empirical relation %Re, the two wake bifurcations of the fixed body then corre-
spond to constant values of Re* whatever the aspect ratio, Re}; ~ 72 for the loss of
axial symmetry and Re}, ~ 78 for the loss of stationarity. Figure 3 shows that for
thick bodies (x < 5), the onset of path oscillation coincides with the first destabi-
lization of the fixed body wake (Re. ~ Re.;), the wake instability causing a lift force
and a torque able to induce the oscillatory motion. For thin bodies, on the con-
trary, the oscillatory motion appears at a Reynolds numbers higher than Re.. For
Re, < Re < Re., PIV measurements have shown that the wake of the freely-rising
thin body is still stationary. These results are presented in detail in ref. [7].
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Figure 3. Onset of the oscillatory motion for a freely-rising body compared to the thresh-
olds of the two successive wake instabilities of the same body when it is held fixed.

3. Characteristics of the oscillatory motion

For Re > Re,, after a short transient following the release of the body from rest,
the body exhibits a planar periodic motion, called zigzag or flutter. This motion is
characterized by horizontal and vertical oscillations of constant amplitude superim-
posed to the body mean vertical rise, as well as oscillations of the body symmetry
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axis about the vertical direction. In all cases, the orientation and the horizontal
velocity oscillate at frequency f, whereas the vertical velocity oscillates at 2f. We
have shown that the body kinematics exhibit interesting properties in the system of
axes sketched in Figure 1, where x is directed along the body symmetry axis, y and
z along two perpendicular radial directions, (z,y) defining the plane of motion: the
component of the body velocity parallel to its axis is constant along the path v =u
and the oscillatory behaviour of the velocity is thus restricted to the transverse com-
ponent v along the y direction. Figure 4 shows that the evolution with Re* of the
axial velocity @ compared to the gravitational velocity u, = ((1 — ps/p;) gh)*? (g
denoting gravity) can be conveniently modeled by equation (1). Similarly, scaling
the transverse velocity v by fd, allowed us to gather all the results along a unique
curve given by (2), the amplitude of which depends only on Re*, as shown in Fig-
ure 5(left). The measurements of the amplitude of the body inclination 6 (i.e.
is the angle between the body symmetry axis z and the vertical) also gather along
a master curve given by (3), the amplitude of which depends only on Re* (Fig-
ure 5, right). The Strouhal number, St = fd/V, is approximately independent of
Re but varies strongly with the aspect ratio, increasing from approximately 0.1 to
0.25 when yx varies from 2 to 10. This contrasts with the behaviour of the Strouhal
number associated to the vortex shedding behind the bodies held fixed, since numer-
ical simulations for Re just above Re. provided values nearly independent of the
body aspect ratio: St = 0.12 for all x. We have shown however that the Strouhal
number St* built with the gravitational velocity u, follows a simple evolution in x'/2
(equation (4), Figure 6, left). Though the body velocity and orientation oscillate
at the same frequency, their phase difference depends strongly on the aspect ratio
and is nearly independent of the Reynolds number: when x varies from 2 to 10, the
phase lag increases continuously from approximately 0 to 110° and then remains
nearly constant for x > 10. The phase difference ®4 between the oscillations of 6
and v also depends on the aspect ratio though it evolves in a shorter range, as can
be seen in Figure 6(right). For further details, the reader is referred to ref. [5, 7].

Ulu, ~ 1.35—3.5x 10 *(Re* — Rel,), (1)

v/(fd) ~ 9x107%x(Re* — Re};)?sin(2 w St* t), (2)

f ~ 5.8x1072(Re* — Re,)%sin(2 7w St*t + ®y), (3)

St* = fdju, ~ 0.1 x> (4)

4. Forces and torques acting on the freely-moving body

The motion of a non-deformable body through an unbounded viscous fluid at rest at
infinity is governed by the generalized Kirchhoff equations [9, 15], which express the
linear and angular momentum balances for the complete fluid/body system. These
equations are commonly written in the system of axes used previously with an origin
fixed with respect to the observer and axes rotating with the body (Figure 1). For
uniform fluid and body densities, they read

(,05 +A>@ — (Ps —|—B>vr = F, + cosb (5)
dt XPf
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Figure 4. Mean axial velocity u normalized by u, as a function of Re* and x. The fit
corresponds to equation (1).
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Figure 5. On the left : Evolution of the amplitude of the transverse velocity v scaled by
27 fd with Re* and x. On the right : Evolution of the amplitude of the body inclination
0 as a function of Re* and x.

s d s .
<p —|—B>—v + (p +A>u7‘ = F/ — sinf (6)
XPf dt XPf
g, 1) (A~ B r: (7)
— - — uv =
xps” dt v
where 7 = 4 is the body rotation rate about the z axis. Equations (5)—(7) are

written in dimensionless form, using the scales I, = d, u, = ((1 — ps/py) gh)*/?,

to = lo/Uo, and F, = (pj—p,) 0 g for the length, velocity, time and force, respectively,
9 being the body volume. The left-hand side of (5)—(7) contains the proper- and
added-inertia force and torque, the coefficients A, B, J, and Q being known functions
of the aspect ratio x. The right-hand side of (5)—(7) contains the projections of the
buoyancy force, which are harmonic functions of the inclination angle 6, and the
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Figure 6. On the left : Scaling of the Strouhal number St* with the aspect ratio. On the
right : Evolution of the phase difference ®y between the oscillations of the body orientation
0 and of the transverse velocity v as a function of Re* and x.

components F,, FY and I'? of the force and torque resulting from the vorticity
produced at the body surface. In ref. [6], for the final periodic path on which
all forces and torques evolve periodically, the inertia and buoyancy contributions
were determined using the kinematic results of ref. [7] and the vortical loads were
deduced from the balances (5)—(7). This led to the following conclusions regarding
the main features of the body dynamics. The force balance in the axial direction
is dominated by the steady components of drag and buoyancy, F ~ —1, resulting
in a constant axial velocity v = w. In contrast the oscillatory contributions to the
transverse force and torque balances are of the same order of magnitude as the
mean drag. The transverse vortical force FY and the vortical torque I'? exhibit
harmonic oscillations at frequency St*. Their amplitudes are plotted in Figure 7 as
a function of Re* and their phase difference (the force FY is in all cases ahead of
the torque I'?) is given by the dimensionless time delay ¢4, displayed in Figure 9.
Since t; ~ 0.8 whatever Re and Yy, the time delay between the transverse vortical
force and the vortical torque is of the order of the characteristic time of the mean
rise, i.e. t, = d/u,. This indicates that the problem is governed by two independent
time scales. On the one hand, the body motion and the vortex shedding process
have a periodicity of f~! o ¢,x~'/2. On the other hand, the evolution of the vortical
structures in the body wake is governed (at leading order) by the time scale t,.
In correspondance with the approximate expressions (1)—(4) provided for the body
kinematics, the characteristics of the vortical loads can therefore be gathered in the
following empirical expressions

1

Fi, ~ —fz(Re" - Re},)'/?sin(2 7St* (t + tq)), (8)
X3/4

| S —E(Re* — Re!))?sin(2 nSt* 1), ©)

the expressions for the amplitudes corresponding to the curves drawn in Figure 7.
The determination of the different terms of the Kirchhoff equations (5)—(7) is also
instructive on how the loads combine to support the body periodic motion. Figure
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Figure 7. On the left : Evolution of the amplitude of the transverse vortical force F?, with
Re* and x. On the right : Evolution of the amplitude of the vortical torque I'?, with Re*
and x.

8 presents for a thick (xy = 3) and a thin (x = 10) body the time evolution of
the predominant periodic loads governing the zigzag motion. Along the transverse
direction, it turns out that the vortical force F? is mostly balanced by the sum of
the inertia term proportional to the body rotation r, say F¥ , and the transverse
component of buoyancy, say F) = sinf; the transverse linear acceleration of the
body having a smaller contribution. Similarly, the inertia torque related to the
angular acceleration of the body is negligible and the vortical torque I';, is mostly
balanced by the restoring added-mass torque associated with the transverse velocity
component v. In particular, the stronger vortical torque observed for larger values
of x corresponds to a larger transverse velocity v, i.e. a larger angle between the
symmetry axis and the instantaneous velocity of the body. It can therefore be noted
that, on the one hand, the transverse vortical force F? is mainly balanced by two
forces that depend on the body inclination and are 7/2 out-of-phase, whereas the
vortical torque is linked to the transverse velocity v. The chronology of the loads
acting on the body can then be summarized as follows (the description is detailed in
ref. [4] together with the evolution of the liquid motion obtained by PIV). Consider
a body that is horizontal (# = 0) with a transverse vortical force acting on it, say
FY < 0. To balance this force, the body is rotating clockwise (r < 0), generating the
inertia force F¥ . While the body rotates, a transverse component of the buoyancy
force is generated, compensating partly for FY and allowing the body to decrease
its rotation rate. Since the rotation also induces a rearrangement of the wake, the
vortical force saturates and starts decreasing. This in turn allows the body to reach a
maximum inclination, for which the buoyancy force and the transverse vortical force
balance each other, which happens after a time period of f~!/4. In parallel, the wake
also generates a torque I on the body, which is now negative, corresponding to a
positive transverse velocity v, i.e. the velocity vector is to the left of the body axis.
Since the maxima of the vortical force and torque are separated by a time period
set by the mean rise motion t,, when the body reaches its maximum inclination,
the vortical torque either continues to grow (x > 3) or has just started decreasing
(x = 2). Since the body axis starts now to rotate counter-clockwise, this results
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in very different constraints on the velocity vector, leading to the different types
of body motion described in ref. [5] : the thick body continues straight ahead and
broadside on (v decreases in magnitude) whereas the velocity vector of the thin body
has to rotate faster counter-clockwise (v increases in magnitude) so that the body
leaves sideways.

The next step, for which a numerical approach might be better suited, could be
to determine quantitatively the rate at which vorticity is produced along the body
surface and shed into the wake and to understand how this rules the behavior of the
vortical force and torque.
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Figure 8. Time evolution of F}, (--), FY (=), F¥, (—), T, (~) and v (—); 0 is superimposed
to FY; On the left : thick body with x = 3, Re = 180, S¢ = 0.125 and w = 1.23; On the
right : thin body with y = 10, Re = 240, St = 0.275 and @ = 1.17.
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Figure 9. Dimensionless time delay between the oscillation of the transverse vortical force
and that of the vortical torque as a function of Re and x.
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