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Abstract. Instability of flow past a cylinder cascade is studied using linear stability analysis.
A new numerical technique is used to find the critical Reynolds number when the flow becomes
unstable. An attempt has also been made to study the blockage effect on critical Reynolds number
and associated Strouhal number.
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1. Introduction

The primary motivation for the current work is to develop suitable techniques for
studying the global instability of separation bubbles such as those occuring in the
flow past a row of circular cylinders placed in a uniform stream, see Gajjar & Azzam
[3], or in the supersonic flow past a compression ramp, Fletcher et al. [1], Korolev et
al. [4]. In many previous studies of the instability of separation bubbles, the basic
flow is taken to be locally parallel and this is used as input into the stability analysis.
Mathematically this is only appropriate when the disturbance wavelength is small
compared to the distance over which the flow develops and this is not always the
case. Nevertheless, in many studies conclusions stemming from such local analyses
are extrapolated to generate conclusions about the global instability of the flow.
This of course raises questions about the credibility of such results.
In the current work we have extended the methods used to compute the steady flow
past a cascade of circular cylinders to study the instability of these flows by using
a new numerical technique. Before implementing this numerical method, a number
of test cases have been used for validation. One such test case is the flow in a
2-D lid-driven cavity where the global instability frequencies are found to correlate
closely with temporal simulations of the linearised unsteady equations using forced
disturbances. This led us to extend our techniques to study the instability of the
flow past a row of circular cylinders and the details are explained in the following
sections.

2. Problem formulation and implementation

The flow past a cylinder cascade is assumed to consist of an infinite number of cir-
cular cylinders placed in a uniform stream with U

∞
in x-direction, see Fig. 1. The

equations governing the 2-D flow past cylinder cascade are the unsteady, incom-
pressible Navier–Stokes equations when written in terms of streamfunction (ψ) and
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vorticity (ω) are given by

ωt + ψyωx − ψxωy = 2

Re
∇2ω

and ∇2ψ = −ω.

Here Re = Ud
ν

is the Reynolds number, U is the uniform speed relative to the cylinder
at large distances from the cylinder, d is the diameter of the cylinder and ν is the
kinematic viscosity of the fluid. All the lengthscale variables are non-dimensionalized
with respect to the cylinder radius, velocities of flow with respect to U

∞
and t is the

non-dimensional time. As shown in Fig. 1, the centres of the cylinder lie on y-axis
i.e, at x=0 and W is the non-dimensional gap width between the cylinders. Due to

W

x

y

1

Figure 1. Sketch of flow past cylinder cascade
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Figure 2. Sketch of physical domain

the symmetry in the flow region in Fig. 1, the problem domain is further simplified
to that as shown in Fig. 2. To ease the computations, this physical domain in (x, y)
plane is transformed to a strip in (ξ, η) domain by means of conformal mapping
described by Fornberg [2].
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Thus, the governing equations of the flow get transformed to

ωt +
∂2ω
∂ξ2

+ ∂2ω
∂η2

+ 1

2
Re

{
∂ψ

∂ξ
∂ω
∂η

− ∂ψ

∂η
∂ω
∂ξ

}
= 0

and

{
∂2ψ

∂ξ2
+ ∂2ψ

∂η2

}
J + ω = 0.





(1)

where J = |dZ/dX|2 is the Jacobian of the transformation. These equations are
solved using normal mode approach of linear stability analysis according to which

ψ(ξ, η, t) = ψ(ξ, η)+δψ̃(ξ, η) exp(λt) and ω(ξ, η, t) = ω(ξ, η)+δω̃(ξ, η) exp(λt)

Substituting the above equations in (1) gives rise to a set of steady flow equations in

terms of ψ and ω and a set of stability equations in terms of ψ̃, ω̃ and λ. Initially, the
steady flow equations are solved for

(
ψ, ω

)
by using a Newton-Raphson linearization

technique and discretizing the resultant linearized equations. The steady flow is then
substituted into the stability equations which with the same discretization gives rise
to a generalized eigenvalue problem of the form

Au = λBu (2)

wherein A is a large, sparse matrix with block pentadiagonal structure and u =(
ψ̃, ω̃

)
. The generalized eigenvalue problem is solved for u and λ using ARPACK

[6]. The numerical technique adopted for discretization is a fourth-order central
difference method in ξ-direction and Chebyshev collocation method in η-direction,
see [3].

3. Results

Numerical experiments were carried out on various grid sizes to check the conver-
gence of the critical Reynolds number (Rec) and critical Strouhal number Stc(=

fd

U

where frequency, f = ℑ(λ)/2π). This study also involved the computations with
different locations of downstream boundary and varying gap widths inorder to un-
derstand their effect on Rec. Due to space limitations, only a few important results
are presented here. Table 1 shows the values of Rec and Stc for finest grid size of
each of the gap widths chosen and for a specific downstream boundary location. It

W Grid Size Rec Stc
(N ×M)

5 64×1681 50.8 0.29519
20 81×1681 49.8 0.13584
50 101×1681 48.9 0.12108
100 101×1681 48.8 0.11806

Table 1. Rec and Stc for varying W and grid size wherein N and M are the number of
grid points in ξ and η directions respectively

is observed from the results that the flow past a cylinder loses stability to a Hopf
bifurcation. The values of Rec and Stc are found to be grid independent in each
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Figure 3. Blockage effect on Rec (left) and Stc (right).

category of W as well as for different downstream boundary locations. Fig. 3 clearly
illustrates that with the increase in the blockage effect (1/W ), there happened to
be increase in Rec as well as in Stc which is in agreement with Kumar & Mittal [5].
The contours of streamlines and vorticity and their corresponding eigenvectors for
W=100 are shown in Fig. 4.

4. Conclusions

The primary instability in the wake for flow past cylinder is found to be due to a Hopf
bifurcation. The critical parameters that causes the instability in the flow are found
for various grid sizes in order to check the convergence. The values of Rec and Stc are
found to be 48.8 and 0.11806 for the finest grid size and for W=100. It is found that
the values of critical parameters are independent of different downstream boundary
locations in the case of W=5, 20 and 50 though it turned out to be computationally
expensive when W=100. The values of Rec and Stc increase considerably with
decrease in W which suggests that the blockage is significant in determining when
the flow loses stability.
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Figure 4. Contours of (a) Streamlines, (b) Vorticity, (c) real part of streamfunction (eigen-
vector), (d) imaginary part of streamfunction (eigenvector), (e) real part of vorticity (eigen-
vector) and (f) imaginary part of vorticity (eigenvector) for a grid size of M=1681, N=101
and W=100
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