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Abstract. Sudden changes found in the time-mean and rms values of force coefficients of a 
circular cylinder in forced orbital motion placed in a uniform stream when plotted against 
ellipticity of the orbital path suggest that two solutions (states) exist. This 2D numerical 
simulation was performed in order to gain further evidence of this hypothesis through flipping 
of the solution. Time histories and limit cycle curves of force coefficients for stationary, in-line, 
and orbital paths around the time of the flip were investigated, as well as time-mean and rms 
values of lift, drag, and base pressure coefficients versus ellipticity for the flipped solution. 
Results provide evidence of the existence of two solutions. 
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1. Introduction 
 
Although there are countless studies for flow around a circular cylinder, either 
stationary or oscillating in one direction, investigations concentrating upon 
orbital motions are still rather uncommon (see e.g. [10], [11]). Among these, 
studies of a cylinder in forced orbital motion in a uniform stream are relatively 
rare. Didier and Borges [7], for a stationary, in-line, or circular path, were able to 
identify lock-in. 

Lu and Dalton [8], working with forced transverse cylinder oscillation and 
investigating the effect of oscillation frequency, found switches in flow patterns 
and sudden 180° phase angle change between lift and cylinder displacement. 
Blackburn and Henderson [6] confirmed these findings, as well as identifying 
sudden changes in energy transfer between cylinder and fluid.  

In earlier studies, the author identified sudden jumps in the time-mean and 
rms values of force coefficients when plotted against ellipticity of orbit. Since 
these sudden jumps occur between two envelope curves [2], the author’s 
hypothesis is that there are two solutions (states) that characterise the wake flow, 
and these represent changes in the structure of flow patterns. These jumps were 
investigated for several cases at different Reynolds numbers, and at different 
amplitudes of the in-line component of orbit [3]. A pre- and post-jump study also 
incorporated energy transfer, limit cycle curves, phase angle differences, and 
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flow patterns [4]. All showed sudden switches, in agreement with the forced 
transverse results of [6] and [8]. 

This study attempts to gather further evidence that two solutions through 
flipping the solutions, as this has been recommended as one method of 
confirming the presence of two solutions [5]. 
 
 
2. Governing Equations and Numerical Method 
 
The dimensionless governing equations for an incompressible constant property 
Newtonian fluid flow around an orbiting circular cylinder are the two 
components of the Navier⎯Stokes equations, the continuity equation and 
pressure Poisson equation written in a non-inertial system fixed to the cylinder:  
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In these equations 2∇  is the 2D Laplacian operator, x, y are Cartesian co-
ordinates, u, v are the x, y components of velocity in the system fixed to the 
cylinder, xa0 , ya0  are the components of cylinder acceleration, p is the pressure, 
D is dilation. Here Re is the Reynolds number, ν/Re Ud=  where d is the 
cylinder diameter, U is the free stream velocity and ν  is the kinematic viscosity.  
    Although in equation (4) the dilation D = 0 by continuity (3), I retain its partial 
derivative with respect to time to reduce numerical errors. Equations (1), (2) and 
(4) will be solved while the continuity equation (3) is satisfied at every time step. 

No-slip boundary condition is used on the cylinder surface for the velocity 
and a Neumann-type condition is used for pressure p. A potential flow 
distribution is assumed far from the cylinder. 

Boundary fitted coordinates are used to impose the boundary conditions 
accurately. Using unique, single-valued functions, the physical domain bounded 
by two concentric circles can be mapped into a rectangular computational 
domain where the spacing is equidistant in both directions. In the physical 
domain logarithmically spaced radial cells are used, providing a fine grid scale 
near the cylinder wall and a coarse grid in the far field. Using the mapping 
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functions, not specified here, the governing equations and boundary conditions 
are transformed into the computational plane. The transformed equations are 
solved by using the finite difference method. For further details see [1]. 

The 2D code developed by the author has been extensively tested against 
experimental and computational results for a stationary cylinder and good 
agreement has been found [1]. The code was extended first for an oscillating and 
then for an orbiting cylinder. For this study the dimensionless time step was 
0.0005 and the number of grid points 301x177. For all Re investigated in this 
study (Re=120-180) the solution was grid independent. The ratio of the radius of 
the outer computational domain and cylinder radius was 40. 

Figure 1 shows the flow arrangement. The motion of the centre of the 
cylinder with unit diameter is specified as follows: 
 

( ) ( ),  2cos0 tfAtx x π=     ( ) ( )tfAty y   2sin0 π−=          (5) 
 
where f is the dimensionless oscillation frequency, Ax, Ay are the dimensionless 
amplitudes of oscillations in x and y directions, respectively. In Figure 1 U is the 
free stream velocity. Here the frequencies in the two directions are identical, 
which for nonzero Ax, Ay amplitudes gives an ellipse, shown in the dotted line in 
the figure. If one of the amplitudes is zero, in-line or transverse oscillation is 
obtained. xA  alone yields pure in-line oscillation, and then as Ay is increased, the 
ellipticity e=Ay/Ax increases to yield a full circle at e=1. The negative sign in 0y  
in equation (5) makes the cylinder orbit clockwise (clw); by changing this sign of 

0y  an anticlockwise (aclw) orbit is obtained. 
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Figure 1. Cylinder in orbital motion 
 
 
3. Computational results 
 
During each set of computations Re and Ax are fixed and f is kept constant at 
some percentage of Strouhal number 0St  (the frequency of vortex shedding from 
a stationary cylinder at that Re). In this study this percentage was between 70-
105 to ensure lock-in at moderate oscillation amplitudes. 
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An interesting phenomenon was observed when looking at the time-mean 
value (TMV) and root-mean-square (rms) values of lift, drag and base pressure 
coefficients for an orbiting cylinder in a uniform flow. Abrupt jumps were found 
when these values were plotted against ellipticity e with Re and Ax kept constant, 
[3]. A typical example for the TMV of lift coefficient for both clockwise and 
anticlockwise direction of orbit is shown in Figure 2a for Re=160, Ax=0.4, 

0St85.0=f . The filled triangles show results for a cylinder orbiting 
anticlockwise (aclw in the figure). Note that there are two envelope curves, 
which are roughly parallel with each other and of negative slope. On the other 
hand, the empty squares in Fig. 2a show results for a clockwise (clw) orbit, with 
the other parameters unchanged. The two envelope curves can be seen, again 
roughly parallel, but the slope is positive, and they are a mirror image of the 
envelope curves of the cylinder orbiting anticlockwise. Although it cannot be 
seen well at small e values in the figure, there are eight jumps or switches in 
state. For both directions of orbit the jumps occur at the same ellipticity values 
and computational points for the two cases lie on different state curves except for 
the values near e=0. In all calculations made so far, LmeanC  has shown this 
pattern. Time histories of LmeanC  before and after the jumps are substantially 
different, [2]. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2a,b. Time-mean and rms values of lift versus ellipticity for clockwise (clw) and 
anticlockwise (aclw) direction of orbit (Re=160; 4.0=xA , f=0.85 0St =0,15997) 
 

The TMV and rms of drag and base pressure, further the rms of lift, behaved 
differently from LmeanC , characterised by two state curves which are not parallel 
but intersect each other at e=0. A typical example is shown in Figure 2b. The 
main parameters (Re, xA  and f) are the same as in Fig. 2a. From the sets of 
computations, it is clear that the two pairs of envelope or state curves are 
independent of the direction of orbit. Here the computational points belonging to 
the same e values coincide with each other and thus naturally lie on the same 
envelope curve. This is reassuring in two ways: (1) The code produces the same 
time-mean and rms results for two different situations represented by the two 
directions of orbit, and this confirms that the code is consistent, and (2) the 
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existence of envelope curves is proved by results obtained for two different 
cases. This finding also supports the idea that there are two states or solutions 
and the solution jumps from one state to the other and back. 

To sum up the findings, there appear to be two states between which the 
solution switches, which indicates a strong possibility of bifurcation. The two 
solutions can be obtained a) by using different initial conditions or b) by flipping 
the solution. It was shown in [4] that changing the initial condition for the 
orbiting cylinder yields two different solutions. With flipping, if both states are 
obtained, this is additional evidence for a two-state solution. For this purpose the 
solution for a circular cylinder (stationary, moving in-line, or in orbital motion) 
placed in an otherwise uniform flow is flipped. This is done by replacing every 
quantity (velocity and pressure fields) by its mirror image values, at one instant 
( ΘπΘ −→ 2 ) without changing the cylinder motion, where Θ  is the polar 
angle. Time-histories and limit cycles were plotted in order to compare pre-flip 
and post-flip solutions. Two types of limit cycles were produced: one for two 
components of flow velocity at a point, and the other for drag and lift 
coefficients. To check that the code for flipping was effective, the least 
complicated cases were attempted first. 
 
 
3.1. FLIPPING FOR A STATIONARY CYLINDER 

 
Computations were carried out for a stationary cylinder at Re=180 for the 
dimensionless time interval of [0,500] and the solution was flipped at 1t =250 
when the flow was already periodic (limit cycle). Time histories of lift and drag 
coefficients and those of u and v velocity components were stored at points 1P  
(2,1) and 2P  (2,-1), as these points have been shown to be reliable for 
experimental measurement of velocity signals (see [9]). Points 1P  and 2P , shown 
in Figure 1, are mirror images of each other and are located in the wake of the 
cylinder on the physical plane, where the origin of the coordinate system is fixed 
to the centre of the cylinder and coordinates are made dimensionless by the 
cylinder diameter d. Time history and limit cycle curves for velocity components 
at these points, i.e. ),( 11 vu , ),( 22 vu  and limit cycle curves for force coefficients 

),( LD CC  were plotted before and after the flip. It was found that: 
- all three limit cycle curves mentioned remain unchanged after flipping, 
- there was an approximately 180° phase shift in ( )tCL  at flipping and 

practically no phase shift in ( )tCD , 
- for a stationary cylinder the shape of lift and drag coefficient signals are 

regular and this feature of the solution is preserved after the flipping as well, 
- due to symmetry in the position of points 1P  and 2P , limit cycle curves for the 

velocity components are mirror images of each other, i.e. ( ) ( )2211 ,, vuvu −=  
and ( ) ( )1122 ,, vuvu −= . 

    All these expected results serve to show that the code works well. Due to lack 
of space no figures are included for the stationary cylinder. 
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3.2. FLIPPING FOR IN-LINE OSCILLATION 
 
Computations were carried out for a cylinder oscillating in-line at Re=180 with 

3.0=xA  amplitude and f=0.9 0St =0.1737 frequency. Flipping was carried out 
when the oscillating cylinder reached its furthest downstream position ( xAx =0 ). 
In this case, velocity signals were measured at points 1P  and 2P , which are fixed 
to the oscillating cylinder. In this way, the velocity components at the two points 
are relative velocities measured in the coordinate system fixed to the cylinder. 
- Figure 3 shows the ( )tCL  signal around the flip ( 1t =247.5535). The shape of 

the signal, after a short transitional period, is reversed, i.e. the more rounded 
peaks switch from bottom to top. This is evidence for the existence of two 
solutions. 

- Here, all limit cycle curves change with the flip. Still, some symmetries can 
be found between quantities before ( 1tt < ) and after ( 1tt > ) the flip, e.g. 

 
) ,() ,( 122111 ttvuttvu >−=<    (see Figures 4a,b) 

 
) ,() ,( 111122 ttvuttvu >−=<     (see Figures 4c,d) 

 
) ,() ,( 11 ttCCttCC LDLD >−=<    (see Figure 5) 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Time history of lift coefficient in the vicinity of the flip 
 
 
 
 
 
 
 
 
 
 
 

a)  ) ,( 111 ttvu <  b) ) ,( 122 ttvu >−  
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Figure 4. Limit cycles for in-line cylinder oscillation (Re=180, xA =0.3; f=0.1737; 1t =247.5535) 
 
Figure 5 shows the relationship between LC  and DC  through the flip. The thin 
and thick closed curves show the ( )LD CC ,  limit cycle curves before and after the 
flip, respectively. Arrows show the orientation of the curves. The thin straight 
line represents the flip, when the solution jumps between the two states. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Relationship between DC  and LC  near flip (parameters as in Fig. 4) 
 
3.3. FLIPPING FOR ORBITING CYLINDER 
 
To break the symmetry of in-line motion an orbiting cylinder was investigated, 
although due to lack of space we cannot go into detail here. A disturbance to in-
line motion, the amplitude of transverse oscillation Ay, is chosen to be much 
smaller than Ax. In this way we expect that the symmetry features obtained for 
the cylinder oscillating in-line are not much distorted. The main parameters of 
the investigated case are: Re=160; 3.0=xA , Ay =0.012 and f=0.9 0St =0.16938, 

1t =247.5535. 

c) ) ,( 122 ttvu <  d) ) ,( 111 ttvu >−  
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- the ( )tCL  signal around the flip is reversed, similarly to the one shown in Fig. 
5 after a short transitional period; i.e. the more rounded peaks switch from 
bottom to top,  

- limit cycle curves show similar features, with the difference that relations 
mentioned for limit cycle curves in subsection 3.2 are just approximately true, 

- limit cycle ),( 0yCL  alters to a near-mirror image with the flip, while 
),( 0xCD  hardly alters at all. 

 
 
3.4. EFFECT OF FLIPPING ON TIME-MEAN AND RMS OF FORCE COEFFICIENTS 
 
For all investigated cases the cylinder was orbiting in clockwise direction. Sets of 
computations were performed to investigate the effect of flipping on the TMV 
and rms values of different force coefficients. Out of the four sets investigated, 
two patterns have been identified. Representatives are shown in Figures 6 and 7, 
where the LmeanC  curves are plotted against ellipticity e. The main feature of the 
first pattern (see Fig. 6) is that solutions flipped when the cylinder position is 
characterised by x0 ≈ x0max (‘3 o’clock’ position) roughly correspond to the 
solutions belonging to the anticlockwise direction of orbit (see also Fig. 2a), 
while keeping the other parameters (Re, xA  and f) unchanged. This means that 

LmeanC  has negative slope, and that the flipped results are basically 
complementary to the values belonging to the case before flipping. The 
discrepancy tends to become larger with increasing e, but at times returns to near 
zero. This is also true if the flipped solution is flipped once more (flipped back), 
although the discrepancy between the doubly flipped solution and the clockwise 
solution is larger. Although only LmeanC  versus e is shown here, similar results 
were obtained for the other TMV and rms values. 
    Figure 7 shows the other characteristic pattern found belonging to flipping 
time when the cylinder position is characterised by y0 = y0max (‘12 o’clock’ 
position) Interestingly in this case the flipped solutions approximate the results 
belonging to the clockwise direction of orbit. The location of the jumps is 
unchanged and the flipped results are complementary to the unflipped solutions 
(i.e. can be found on the other state curve). In this respect the effect of flipping is 
very similar to that of changing the initial conditions for the cylinder motion [4]. 
The other surprising thing is that the flipped solution reproduces the state curves 
very accurately over the whole investigated e domain. The flipped solution was 
flipped back; Figure 8 shows an almost perfect reproduction of the original curve 
after two flippings! At this stage it is unclear what kind of mechanism leads to 
either pattern 1 or pattern 2. Hence further investigations are needed. It seems, 
though, that the position of the cylinder at the time when the flipping takes place 
has a crucial effect. Results for both patterns, however, give some extra evidence 
for the existence of a double solution, which seems as if it might be a case of 
bifurcation. 
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Figure 6. Flipped and unflipped TMV of lift versus e (Re=160, 3.0=xA , f=0.9 0St =0.16938) 

 
Figure 7. Flipped and unflipped TMV of lift versus e (Re=160, 4.0=xA , f=0.85 0St =0.15997) 
 

 
Figure 8. Original and doubly flipped TMV of lift versus e (as in Fig. 7) 
 
 
3. Conclusions 
 
The effect of flipping on flow features for a stationary, oscillating or orbiting 
cylinder in a uniform stream was studied. Limit cycle and time history curves 
were investigated, and results for a cylinder either stationary or in in-line motion 
gave evidence for the existence of two solutions (states). Simulations of an 
orbiting cylinder with small cross-wise amplitude further supported this 
conclusion. The time-mean and rms values of force coefficients were 
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investigated versus ellipticity e for a cylinder orbiting clockwise, and two 
patterns were identified: (1) the flipped solution approximates the solution 
belonging to the anticlockwise orbit, discrepancy increasing with e, or (2) the 
flipped solution gave a very accurate complementary solution to the clockwise 
orbit, even when double-flipped. 

Further research is needed to explain why two patterns appear, and to further 
clarify the phenomenon causing sudden changes in time-mean and rms values of 
force coefficients. POD analysis is planned to identify the type of bifurcation. 
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