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Summary

In this paper the dynamic behavior of interacting cracks in piezoelectric materials
under time-harmonic inplane electromechanical loading is investigated. By means of a
hypersingular boundary element approach results are obtained for the scattering of
normally incident longitudinal waves by two parallel cracks and, alternatively, two
collinear cracks in a piezoelectric PZT-5H ceramic.

Introduction

Piezoelectric materials produce an electric field when deformed, and undergo
deformation when subjected to an electric field. By virtue of this intrinsic coupling they
have found extensive usage in smart devices as electromechanical actuators, sensors and
transducers. However, when loaded in service these piezoelectric materials may fail
prematurely due to their brittleness and presence of defects or flaws produced during their
manufacturing process. Thus Fracture Mechanics plays an important role in the design of
such piezoelectric devices. Analytical solutions for some simple crack geometries under
dynamic loading have been presented by several authors (see, e.g., [1]). For more general
conditions numerical methods need to be used. The Boundary Element Method (BEM) is
particularly well suited to cases where stress concentrations, like the ones induced by the
existence of cracks, are present. Recently, Zhang and coworkers have presented BEM
formulations that makes use of a Laplace-domain fundamental solution to study problems
in the time domain involving cracks in infinite solids subjected to both anti-plane [2] and
in-plane [3] loading.

In this paper, a hypersingular frequency domain BEM for the analysis of cracked 2-D
piezoelectric media is implemented and applied to the study of wave scattering by
parallel and collinear cracks configurations. The time-harmonic fundamental solution
derived by Denda et al. [4] for 2-D piezoelectrics is considered. The strongly singular and
hypersingular kernels arising in the tractions boundary integral equation are analytically
transformed into weakly singular and regular integrals prior to any numerical evaluation.
This is achieved by the simple election of an integration variable consistent with the
material characteristic parameters [5]. Discontinuous quarter-point elements are used next
to the crack tip. Stress (SIF) and electric displacement intensity (EDIF) factors are
computed directly from nodal values of the crack opening displacements (COD) and the
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electric potential jump at the quarter-point element. The method is completely general
and thus applicable to any crack configuration in both finite and infinite solids.

Formulation and Numerical Solution Procedure

Following Barnett and Lothe [6] the piezoelectric problem may be formulated in an
elastic-like fashion by using a displacement vector extended with the electric potential
and a stress tensor extended with the electric displacement components. Then, the mixed
formulation of the BEM is expressed in terms of both the displacement and the traction
boundary integral equations as

Cyu; + jrp;qur = j‘ru;pjdl—‘ ; cypy TN, jFS:IJquF =N, jrd:IJder (D

where N, is the outward unit normal at the collocation point, lowercase (elastic) and
uppercase (extended) subscripts take values 1, 2 and 1,2,3 respectively. p;, and uj, are
the fundamental solution extended tractions and displacements, associated to a line force
(I=1,2) or to a line charge (I=3), and s, and d, are obtained by differentiation as

*
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The fundamental solution may be split into singular (static) plus regular (frequency
dependent) terms [4]. For the singular part we consider the classical static solution [7]
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where Ajr and Hg; are complex constants depending on the material properties, and the
collocation point & and the observation point x are defined in the complex plane by

ZIE =& TG, 5 oz =X, tpgx, 5 R=123 (@))]
Lr being the roots of the characteristic equation of the piezoelectric material.

We consider the regular part of the fundamental solution as given in [4]

uR(%,8,0) = jZ SE w(k, [0 (x-8))) +21Inn. (x-&)|}dS(n) (5)
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where g and E; depend on the material properties, ¢, and ki, are the phase velocity

and the wave number, respectively, n is a unit 2-D vector and

y(s) =ime® —2[cos(s) ci(s) + sin(s) si(s)] (6)
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is a singular function such that the kernel of the integral in (5) behaves regularly. In (7) si
and ci stand for the sine and cosine integrals.

Considering the following change of variables

XM:ZXM_Z%/I:(XI_EJI)_'_MM(Xz_EJz) ; M=123 @)

the strongly singular and hypersingular terms in (1) can be easily integrated following the
regularization procedure described in reference [5] for static piezoelectricity.

The discretization approach follows [5]: discontinuous quadratic BE are used to mesh
the crack, with the crack tip elements being straight line quarter-point (figure 1) and
standard quadratic elements are used for the rest of the boundary.
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Figure 1. Discontinuous quarter-point element.

The SIF and EDIF can be directly computed form the nodal values of the COD and
the electric potential discontinuity at the collocation node NC1 next to the crack tip [5]

K, 5 Aup®!
K, |=2 /TTc [Re(B)] | Au}® 8)
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where B depends on the material properties.

Numerical Results and Discussion

To validate the formulation, the problem of a Griffith crack of length 2a in a
piezoelectric ceramic PZT-6B (see table I for material properties) is first considered.

Table I. Material properties

Elastic (GPa) Piezoelectric (C/m?) | Dielectric (C/GVm)
Cu Cp Ces Ci €21 €22 €16 €1 €2
PZT-6B | 168 163  27.1 60 -0.9 7.1 4.6 3.6 34
PZT-5H | 126 117 23 84.1 | -6.5 233 17 15.04 13

Plane harmonic longitudinal waves, with an associated stress amplitude o, impinging
normally on the crack are considered as in Shindo et al. [1] for comparison purposes:
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u=0; v=yv, exp[ico(%ﬂ)] ; 0=0, exp[im(%ﬂ)] 9

Where C=\/(C22 + eiz /822)/P

Figure 2 shows the variation of the normalized mode I SIF versus the normalized

frequency wa/C,, Cs being (Cee/p)"”. Good agreement is observed with the analytical
solution given in [1].
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Figure 2. Dynamic SIF for a Griffith crack.

Next, the scattering of the same plane harmonic wave as defined in equation (9) by
two collinear cracks (figure 3) in PZT-5H ceramic (Table I) is studied. Crack separations
of h=a/2, a, 2a are considered and the obtained results are compared with those of the
Griffith crack to illustrate the dynamic interaction effects. Numerical results for the SIF
and the EDIF are shown in figures 4 and 5, respectively.
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Figure 3. Problem geometry: (i) Two collinear cracks; and (ii) Two parallel cracks.

Finally, the scattering of the plane wave defined in (9) by two parallel cracks (figure
3) in an unbounded PZT-5H ceramic is considered. Normalized values of the SIF and the
EDIF at the upper crack are shown in figures 6 and 7, respectively. Crack separations of
h=0 (Griffith crack), a/2, a, 2a are studied. Note that the interaction effects are much
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larger for this configuration.

The BE mesh used for all the examples consists of ten discontinuous quadratic
elements per crack, the crack tip elements being quarter-point elements.
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Figure 4. Normalized SIF for the two collinear cracks configuration.
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Figure 5. Normalized EDIF for the two collinear cracks configuration (k=g5/€5;).
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Figure 6. Normalized SIF for the two parallel cracks configuration. Upper crack.
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Figure 7. Normalized EDIF for the two parallel cracks configuration. Upper crack.
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