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ABSTRACT 

In this paper, the heat transfer and fluid flow due to 
buoyancy force in a square enclosure using nanofluids are 
studied. Four different types of model from the literature 
are considered for the effective viscosity of the nanofluid. 
Finite Element method has been applied to incorporate a 
homogeneous solid-liquid mixture formulation for the two-
dimensional buoyancy-driven convection in the enclosure 
filled with three different types of nanofluids .Simulations 
have been carried out to investigate the effects of the 
volume fraction, Nusselt number and Grashof number. An 
increase in Nusselt number was found with the volume 
fraction of nanoparticles for the whole range of Grashof 
number. Other than the thermal conductivity, the effective 
dynamic viscosity found to play a major role in heat 
transfer enhancement as the significant difference is 
observed from different adopted models.  

Keywords: Nanofluids; Natural convection; Finite Element 
Method; Enclosure  
 
NOMENCLATURE 

A             Aspect ratio 

pc           Specific Heat 

pd           Nano particle diameter 

Gr          Grashof Number  
H           Cavity Height  
L             Cavity Length 

fk           Fluid thermal conductivity 

sk            Solid thermal conductivity 

Nu          Local Nusselt number 
Pr            Prandtlnumber 
Q              Total heat transfer from the left wall 

,U V        Dimensionalness Interistital velocity component 
,u v          Interistital velocity component 
,x y          Cartesian coordinates 

,X Y        Dimensionless coordinates 

T               Temperature 
Greek symbols 
α               Thermal diffusivity 

fβ              Fluid thermal expansion coefficient 

sβ            Solid expansion coefficient 

φ              Solid volume fraction 

fν            Kinematic viscosity 

θ              Dimensionless temperature, 
ω             Vorticity 
Ω            Dimensionless vorticity 

'ψ           Stream function 
ψ             Dimensionless stream function 
ρ             Density 
μ             Dynamic viscosity 
Subscripts 
eff          Effective 

f            Fluid 

H           Hot 
L            Cold 
nf           Nanofluid 
o             Reference value 
s              Solid 

 
INTRODUCTION  

Heat transfer fluids provide an environment for adding or 
removing energy to systems and their efficiencies depends 
on their physical properties such as thermal conductivity, 
viscosity, density and heat capacity. Low thermal 
conductivity is often the primary limitation for heat transfer 
fluids such as water, oil, ethylene glycol mixture in 
enhancing the performance and the compactness of many 
engineering electronic devices. To overcome this drawback 
there is a strong motivation to develop advanced heat 
transfer fluids with substantially higher conductivities to 
enhance thermal characteristics, suspension of colloidal 
particles dubbed as nanofluids. Choi (1995) in his 
pioneered work uses small amount of particles which are 
dispersed into water and other fluids. It has since then been 
shown experimentally by many scientists and engineers. 
Lee et al. (1999), Xuan et al. (2000) and Eastman et al. 
(2001) used nanoparticles as Oxide, Copper and Alumina 
particles respectively and conclude that nanofluids can 
have anomalously higher thermal conductivities than that 
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of the base fluid, thus posing as a promising alternative for 
thermal applications.  

In the literature little work has been done on natural 
convection phenomena in nanofluids with differentially 
heated enclosures. Hwang et al. (2007) investigated the 
buoyancy-driven heat transfer of water-based Al2O3 
nanofluids in a rectangular cavity. They showed that the 
ratio of heat transfer coefficient of nanofluids to that of 
base fluid is decreased as the size of nanoparticles 
increases, or the average temperature of nanofluids is 
decreased. Khanafer et al. (2003) was the first to 
investigate the problem of buoyancy driven heat transfer 
enhancement of nanofluids in a two-dimensional enclosure. 
They tested different models for nanofluid density, 
viscosity, and thermal expansion coefficients and found 
that the suspended nanoparticles substantially increase the 
heat transfer rate any given Grashof number. Jou and Tzeng 
(2006) used the Khanafer’s model and found volume 
fraction of nanofluids cause an increase in the average heat 
transfer coefficient. Jang and Choi (2004) investigated the 
Benard regime in nanofluid filled rectangular enclosure. 
Wang et al. (2006) conducted a study on natural convection 
in nanofluid filled vertical and horizontal enclosures 
Polidori et al. (2007) analyzed the heat transfer 
enhancement in natural convection using nanofluids. Oztop 
et al. (2008) analyzed numerically the natural convection in 
partially heated enclosures filled with nanofluids. 

The aim of the present article is to study the natural 
convection of nanofluid in a two dimensional enclosure. In 
the next section, we present the mathematical formulation 
of the problem. In Section 3, we discussed the finite 
element method. Section 4 contained the result and 
discussion. Finally in Section 5, we provide a conclusion 
on results obtained. 
 
MATHEMATICAL FORMULATION: 

The geometry under consideration is a horizontal enclosure 
of height H  and length L . It is assumed that the third 
dimension of the cavity is large enough so that the fluid 
flow and heat transfer can be considered two dimensions. 
The vertical walls of the enclosure are subjected to 
temperature HT  and LT  at the vertical left and right walls, 
respectively while the adiabatic boundary conditions are 
applied at upper and horizontal walls. The fluid in the 
enclosure is a water based nanofluid containing different 
type of nanoparticles: Cu, Al2O3, and TiO2. The nanofluid 
is assumed incompressible and the flow is assumed to be 
laminar. It is assumed that the base fluid (i.e. water) and the 
nanoparticles are in thermal equilibrium and no slip occurs 
between them. The thermophysical properties of the 
nanofluid are given in Table 1. 

The governing equations for the present study in 
terms of the stream function-vorticity formulation are of the 
following form: 

Kinematics Equation      
2 2

2 2

' '
x y
ψ ψ ω∂ ∂

+ = −
∂ ∂

         (1) 

Energy Equation  

( ) ( )
d d

nf nf
p pnf nf

k kT T T Tu v
x y x x y yc c

α α
ρ ρ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟+ = + + +
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂
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(2) 

Vorticity Equation  
2

, ,
, ,

1 (1 )eff
s o s f o f

nf o nf o

Tu v g
x y x

μω ω ω φρ β φ ρ β
ρ ρ

∂ ∂ ∂⎡ ⎤+ = ∇ + + −⎣ ⎦∂ ∂ ∂

,   (3) 

where  
( )
( )

eff stagnant
n f

p n f

k

c
α

ρ
= . 

The effective density of a fluid containing suspended 
particles at a reference temperature is given by 

, , ,(1 )n f o f o s oρ φ ρ φ ρ= − + .            (4) 

The effective viscosity of a fluid of viscosity fμ  

containing a dilute suspension of small rigid spherical 
particles is given by four models. 
Einstein’s model (1956) 

(1 2.5 )= +eff fμ μ φ ,  for  0.05<φ .          (5a) 

Brinkmann (1952) as  

2 .5(1 )
f

e ff

μ
μ

φ
=

−
.           (5b) 

Brownian motion effect’s model (2005) 
2(1 2 . 5 6 . 1 7 )= + +e f f fμ μ φ φ .          (5c) 

Pak and Cho’s Correlation (1998) 
2(1 3 9 . 1 1 5 3 3 .9 )= + +e f f fμ μ φ φ .     (5d) 

The heat capacitance of the nanofluid can be presented as  
( ) ( ))( (1 )p n f p pf s

c c cρ φ ρ φ ρ= − + .(6) 

The effective stagnant thermal conductivity of the solid 
liquid mixture was introduced by Wasp  as follows 
( ) 2 2 ( )

2 ( )
e ff s ta g n a n t s f f s

f s f f s

k k k k k
k k k k k

φ
φ

+ − −
=

+ + −
.            (7) 

 ( )e f f e f f ds ta g n a n t
k k k= + .             (8) 

    ( ) 1| |=d p pn f
k C c V dρ φ .            (9) 

where 2 2
1| | = +V u v  and C  is an unknown constant 

and the value can be calculated by the experiment. Here 
0=C  corresponds to zero thermal dispersion. 

The equation (1) to (3) can be cast in non-dimensional form 
by incorporating the following dimensionless parameters 

3
, , ,

T

x y u HX Y U
H H g T Hβ

= = =
Δ
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3 3
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 ,∂ ∂
= = −

∂ ∂
U V

Y X
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2 2

∂ ∂
+ = −Ω

∂ ∂X Y
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where 
3

2
f

f

g T H
G r

β
ν
Δ

= , Pr f

f

ν
α

= , and 

LA
H

=  which is assumed unity in the investigation. The 

diameter of the nanoparticle 
pd  is taken as 10 nm in the 

present study. The physical dimension of the enclosure H  
is chosen to be 1 cm. The coefficient λ  that appears next 
to the buoyancy term is given as  

( )
( )

,,

,,

1
1 11

1

nfs

s of o f
f

f os o

ββλ ρρφ φ ββ
φ ρφ ρ

⎡ ⎤
⎢ ⎥
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⎢ ⎥−
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.          (16) 

The Boundary conditions are as follows: 
2

20 , ,U V
Y Y
θ ψψ ∂ ∂

= = = = Ω = −
∂ ∂

 

 at 0,1Y =  and 0 1X≤ ≤           (17) 
2

20 , 0 .5, ,U V
X
ψψ θ ∂

= = = = Ω = −
∂

        

 at 0 , 0 1X Y= ≤ ≤            (18) 
2

20 , 0 .5 , ,U V
X
ψψ θ ∂

= = = = − Ω = −
∂

 at 1, 0 1X Y= ≤ ≤            (19) 
Lots of factor such as thermal conductivity, heat 

capacitance of both the pure fluid and ultrafine particles, 
the volume fraction of the suspended particles, the 
dimension of these particles, flow structure and the 
viscosity are effecting the Nusselt number of nanofluid. 
The local variation of the Nusselt number are given by  

,

e f f

c o n d f l u i d f

kQN u
Q k X

θ∂
= = −

∂
,           (20) 

where ( ) 0|e ff xs ta g n a n t

TQ k A
x =

∂
= −

∂
.          (21) 

 

 
Table 1: Thermophysical properties of fluid and 
Nanoparticles 
 

NUMERICAL METHOD 

The finite element method has been used to solve the 
nonlinear system of equations (11) to (14). 
 
Variational Formulation  

The variational form associated with equations (11) to (14) 
over a typical square element is given by: 
     1 1

1 0
+ + ∂⎛ ⎞− =⎜ ⎟∂⎝ ⎠∫ ∫

e e

e e

Y X
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.              (26)  
where 4321 ,,, wwww  and 5w  are arbitrary test 
function. All functions satisfy the homogeneous boundary 
conditions, as per theoretical requirements. 
 
Finite Element Formulation  

 The structure domain defined as: 0 1X≤ ≤  and 
0 1Y≤ ≤  is discretized into square elements of same 
size. The finite element model, obtained from equations 
(22-26), by substituting finite element approximations of 
the form. 

 
4 4 4

1 1 1

4 4
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 (27)  

with  ( )1, 2,3, 4,5, 1, 2,3, 4i jw i jξ= = =  

where 1 2 3, ,ξ ξ ξ and 4ξ  are the linear interpolation 

functions for a rectangular element eΩ and have been 
taken as: 
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+ + + +

+
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  (28) 

The finite element model of the equations thus formed is 
given by 

Physical  
Properties 

Fluid 
phase 
(water) 

Cu  2 3A l O  
3TiO  

pC (J/kgK)  4179 385 765 686.2 
3(kg / m )ρ  997.1 8933 3970 4250 

k(W / mK)  0.613 400 40.0 8.9538 
7 210 (m / s)α×  1.47 1163.1 131.7 30.7 

510 (1/ K)−β×  21.0 1.67 0.85 0.9 



 
 

Copyright © 2009 CSIRO Australia 4

{ }
{ }
{ }
{ }
{ }

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

K K K K K U
K K K K K V

K K K K K

K K K K K

K K K K K

ψ

θ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥

Ω⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

b

b

b

b

b

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

     (29)           

where [ ]mnK  and ( ), 1, 2,3, 4,5mb m n⎡ ⎤ =⎣ ⎦  are defined 
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The whole domain is divided into square elements. Each 
element is four nodded. At each node five functions are to 
be evaluated hence after assembly of the element equations, 

we obtain a system of equations which is nonlinear 
therefore an iterative scheme is used to solve it. The system 
is linearized by incorporating the functions U  and V , 
which are assumed to be known. The system of linear 
equations has been solved by using Gauss elimination 
method by maintaining an accuracy of four significant 
digits. 

RESULTS AND DISCUSSIONS 
 
The finite element method has been used to solve the 
nonlinear system of equations (11) to (14).The controlling 
parameter that define the fluid flow, heat and natural 
convection in an enclosure are aspect ratio A ,  Gr , φ  
and Pr . It needs quite extensive analysis to cover effects of 
each parameter. It is intended to limit the analysis for 

Grashof number 3 510 10≤ ≤Gr , 0 0.25φ≤ ≤ as 
model of nanofluid and for an aspect ratio of 1 as a square 
enclosure. The thermophysical properties of fluid and solid 
phase are shown in table 1. A grid independence study is 
conducted using three different grid sizes of 
41 41, 61 61× ×  and 81 81×  for aspect ratio of 1. It 

is observed that further refinement of grids from 61 61×  

to 81 81×  do not have a significant effect on the results. 

Based upon these observations, a uniform grid of 61 61×  
points is used for all calculations of aspect ratio of 1. 

Fig. 1 (a)-(d) demonstrate the typical features of the 
volume fraction φ  on the stream line and isotherms for 
fixed value of the Grashof number. Fig.1 (a) shows the 
representive sequence of stream line isotherms pattern in a 
square domain for 0φ = . In this study the flow consist of 
single roll, the tendency of which is to rearrange the fluid 
into a position of stable stratification, one in which the 
warm fluid that initially occupied the left half eventually 
moves to the upper half of the domain. Fig.1 (b) to 1 (d) 
indicates, as the volume fraction increases, the velocity at 
the centre of the enclosure increase as a result of higher 
solid-fluid transportation of heat. Flow strength also 
increases with increasing of volume fraction of nano 
particles. 

The variation of the Nusselt number for different volume 
fraction of nanoparticle is shown in fig. 2. Volume fraction 
increases implies that more and more particles will be 
suspended so that thermal conductivity increased. 
Physically the heat transfer will also increase. It is clear 
from the graph that the heat transfer increases when 
increasing the volume fraction of nanoparticles.  

The effect of Grashof number for pure fluid and 
nanofluids is depicted in Fig. 3. For a fixed aspect ratio, 
when Grashof number increases Nusselt number also 
increases. It is clear from the figure that the presence of the 
nanoparticles plays a significant role to increase the heat 
transfer. 

Fig. 4 demonstrates the effect of particles diameter on 
Nusselt number. Comparison is also being done for 
Brinkman’s model and Pak and Cho’s Model for dynamic 
viscosity. Since four models have been taken for dynamic 
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viscosity but the results of Einstein’s model, Brinkman’s 
model and Brownian motion effects model are similar so 
only the comparison of two models have been taken. As the 
size of the nanoparticles increases, the Nusselt number of 
the nanofluid decreased. The ratio of the thermal 
conductivity is remarkably decreased as the size of the 
nanoparticles increases. So the Nusselt number of the 
nanofluids is decreased as the diameter of the nanoparticle 
increases.  

Fig. 5 represents the variation of the Nusselt number 
with volume fraction using different nanoparticles for a fix 
value of Grashof number. The figure shows that the heat 
transfer increases almost monotonically with increase in 
volume fraction for all nanofluids.  
 
CONCLUSION 

The major findings contained in this paper are as follows: 
the natural convection of water based nanofluids is more 
stable than base fluids in a square enclosure heated from 
side, as the volume fraction of nanoparticles increases the 
size of the nanoparticle decreases, or the average 
temperature of nanofluids increases. In addition, as the 
viscosity increases the heat transfer coefficient derived 
from Brinkman’s model evaluating lower effective 
viscosity increase but the coefficient with Pak and Cho’s 
model is decreased. The results indicate that the Nusselt 
number increases as the volume fraction increases. The 
presence of the nanoparticles in the fluid changes the 
characteristics of the base fluids. A comparative study of 
different nanofluids based on the physical properties of 
noparticles is analyzed and found that Cu nanoparticles 
have high value of thermal diffusivity. 
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Fig. 1(a) Φ  = 0.0 
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Fig. 1(a) Φ  = 0.1 
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Fig. 1(a) Φ  = 0.21 
 
Fig. 1 Stream line contours & Isotherms at various fraction 
parameters (Gr = 10000, Pr = 0.7) 
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Fig. 2 Variation of the Local Nusselt number along the hot 
wall for different Volume fraction (Gr = 10000, Pr = 0.7) 
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Fig. 3 Variation of the Local Nusselt number along the hot 
wall for different Grashoff number (Φ =.07, Pr = 0.7 ) 
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Fig. 4 Variation of the Local Nusselt number with particle 
diameter for diffrerent Model .(Φ =.07, Pr = 0.7, Gr = 
10000 ) 
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Fig. 5 Variation of the Local Nusselt number with 
Volumefraction for diffrerent nanofluids, (Gr = 10000, Pr 
= 0.7 ) 
 


