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ABSTRACT 
In thixotropic liquids the rheological properties depend on 
the liquid’s deformation history. Clay suspensions (as 
encountered in oil sands mining) are a prominent example. 
Activated clay particles form a network. As a consequence 
of (ionic) transport limitations, the network is not an 
instantaneous feature; it takes time to build up, and also to 
break down, the latter as a result of deformation in the 
liquid. In this paper a procedure for detailed simulations 
of flow of viscous thixotropic liquids is outlined. The 
local viscosity of the liquid relates to the level of integrity 
of the network. The time-dependence of the liquid’s 
rheology is due to the finite rate with which the network in 
the liquid builds up or breaks down. This concept has been 
incorporated in a lattice-Boltzmann discretization of the 
flow equations. With this methodology we study (at the 
macro-scale) the way thixotropic liquids are mobilized in 
mixing tanks, and we study (at the meso-scale) the drag 
force experienced by dense assemblies of coarse particles 
(e.g. sand) in thixotropic liquids. 

NOMENCLATURE 
d  sphere diameter 

ijd  rate of strain tensor 

D  impeller diameter 
0f  body force 

* ** ***, , ,D D D D
F F F F   (normalized) drag force 

H  distance 
1 2,k k  thixotropy parameters 

N  impeller speed 
iu   velocity component 

su   superficial velocity 
t  time 
T  tank diameter 

, , ,x y z r  spatial coordinates 
 

1α +  viscosity ratio 
δ  interparticle spacing 
Δ  lattice spacing 

, rcpφ φ  (random-close packing) solids volume fraction 

, cγ γ& &  (characteristic) deformation rate 
λ  network parameter 

, ,a ssμ μ μ∞  apparent, infinite-shear, steady-state viscosity 
ρ  density 
τ  stress 
 
Db Deborah number 
Re Reynolds number 
S shear rate number 

INTRODUCTION 
Many processing and mixing applications involve 
complex liquids. Examples are specifically abundant in 
food, pharmaceutical, and related industries; paper and 
pulp; polymer processing; and also oil sands mining and 
operations; the latter being the major motivation of the 
present work. One of the many intriguing phenomena that 
can occur in complex liquids is the development of a yield 
stress. Usually the yield stress is the consequence of a 
network being generated as a result of particle-particle or 
(macro-) molecular interactions of agents dispersed in a 
carrier phase. For example, in oil sands processing 
(Masliyah et al. 2004) clay particles get surface activated 
by (hot) water injection which initiates long range 
interactions between them. As a result of (ionic) transport 
limitations, the network is not an instantaneous feature; it 
takes time to build up, and also to break down as a result 
of deformations in the liquid. In non-homogeneous flows 
such time-dependent rheology (usually termed thixotropy) 
is closely linked to the flow dynamics as the (also non-
homogeneous) level of network integrity is transported 
with the flow. It is expected that, from a fluid dynamics 
point of view, interesting situations occur when the time 
scales related to the network interfere with characteristic 
flow time scales. 
 
In the applications that motivate the present work, 
geometrical complexity of the flows is an essential 
feature. On the macro scale one could think of flows in 
agitated vessels, or separation devices such as 
hydrocyclones. In many cases such process equipment 
operates in turbulent or (as is often the case with relatively 
viscous non-Newtonian liquids) transitional flow regimes. 
Also on the meso scale geometrical complexity matters: 
e.g. dense liquid-solid suspensions with complex 
interstitial liquid domains and moving solid particles. In 
any case: realistic numerical simulations of such flows 
requires flexibility in setting up computational grids, and 
above all computational efficiency in order to be able to 
resolve the flow including its flow structures to a 
sufficient level of detail.  Previous studies (Derksen & 
Van den Akker 1999; Hartmann et al. 2004) have shown 
that the lattice-Boltzmann method (Succi 2001) is a 
versatile procedure for performing highly resolved 
computational fluid dynamics of Newtonian fluids. In this 
paper lattice-Boltzmann simulations of flows of 
thixotropic liquids in complexly shaped confinements at 
meso and macro scale are discussed. 
 
A troubling issue regarding simulating non-Newtonian 
rheology is the steep increase of the number of parameters 
with increasing complexity of the model characterizing 
the liquid, and the need to (experimentally and/or 
computationally) determine their values. For this reason 
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we choose to limit the number of parameters by adopting 
a relatively simple thixotropy model. 

THIXOTROPY MODEL 
The thixotropy model we have adopted is based on early 
work due to Storey & Merrill (1958), and Moore (1959), 
more recently reviewed and applied by Mujumdar et al. 
(2002). In this purely viscous (i.e. non-elastic) model we 
keep track of a scalar λ  that varies between 0 and 1 and 
indicates the integrity of the network ( λ =0: no network; 
λ =1: fully developed network). Its transport equation 
reads 

 ( )1 2 1i
i

u k k
t x
λ λ γλ λ∂ ∂
+ = − + −

∂ ∂
&  (1) 

(summation over repeated indices) with iu  the ith 

component of the fluid velocity vector, and  2 ij ijd dγ =&  

a generalized deformation rate; 1
2

j i
ij

i j

u ud
x x

⎛ ⎞∂ ∂
= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 is the 

rate of strain tensor. The first term on the right hand side 
of Eq. 1 indicates breakdown of the network due to liquid 
deformation; the second term is responsible for build-up 
of the network with a time constant 1

2k −  associated to it. In 
the model, the apparent viscosity aμ  is linked to the 
network integrity according to 

 ( )1aμ μ αλ∞= +  (2) 

In a homogeneous shear field with shear rate γ& , the 
steady-state viscosity is 

 2

1 2

1ss
k

k k
μ μ α

γ∞

⎛ ⎞
= +⎜ ⎟

+⎝ ⎠&
 (3) 

The parameter μ∞  can thus be interpreted as the infinite 

shear viscosity. The zero-shear viscosity is ( )1μ α∞ + . A 
typical representation of the steady-state rheology (Eq. 3) 
is given in Figure 1. The thixotropic liquid as defined by 
Eqs. 1 and 2 has four parameters: 1 2, , ,k kμ α∞ . 
 

  

Figure 1: Steady-state rheology (Eq. 3) with 2

1
c

k
k

γ ≡& . 

FLOW SOLVER AND SCALAR TRANSPORT 
MODELING 
The lattice-Boltzmann method (LBM) is a well-
established way to numerically solve the incompressible 
Navier-Stokes equations. The method originates from the 
lattice-gas automaton concept as conceived by Frisch, 
Hasslacher, and Pomeau in 1986. Lattice gases and lattice-
Boltzmann fluids can be viewed as fictitious particles 

moving over a regular lattice, and interacting with one 
another at lattice sites. These interactions (collisions) give 
rise to viscous behavior of the fluid, just as 
colliding/interacting molecules do in real fluids. Since 
1987 particle-based methods for mimicking fluid flow 
have evolved strongly, as can be witnessed from review 
articles and text books (Chen & Doolen 1998; Succi 2001; 
Sukop & Thorne 2006).  
 
The main reasons for employing the LBM for fluid flow 
simulations are its computational efficiency and its 
inherent parallelism, both not being hampered by 
geometrical complexity. More recently LBM has been 
applied to non-Newtonian fluid mechanics (Yoshino et al. 
2007; Vikhansky 2008). 
 
In this paper the LBM formulation of Somers (1993) has 
been employed which falls in the category of three-
dimensional, 18 speed (D3Q18) models. Its grid is 
uniform and cubic. Planar, no-slip walls naturally follow 
when applying the bounce-back condition. For non-planar 
and/or moving walls (that we have in case we are 
simulating the flow in a mixing tank with a revolving 
impeller) an adaptive force field technique (a.k.a. 
immersed boundary method) has been used (Goldstein et 
al. 1993; Derksen & Van den Akker 1999). We have 
employed and validated this method extensively in 
previous studies involving (turbulent) flow in process 
equipment (e.g. Derksen & Van den Akker 2000; Derksen 
2005). 
 
For incorporating thixotropy, the viscosity needs to be 
made dependent on the local value of the network 
parameter λ  (Eq. 2), and (more importantly) the transport 
equation for the network parameter (Eq. 1) needs to be 
solved. Solving scalar transport equations in a LBM 
context is an option (see e.g. Eggels & Somers 1995). It is, 
however, a relatively expensive approach in terms of 
computer memory usage: in order to solve for a single 
scalar we need to allocate as much memory as for solving 
the Navier-Stokes equations (i.e. 18 real values per lattice 
node in an 18 speed LBM). 
 
Instead we solve Eq. 1 with an explicit finite volume 
discretization on the same (uniform and cubic) grid as the 
LBM. This way only two real values per lattice node need 
to be stored. An additional advantage of employing a 
finite volume formulation is the availability of methods 
for suppressing numerical diffusion. This is particularly 
important in the present application since Eq. 1 does not 
have a molecular or turbulent diffusion term; in order to 
correctly solve Eq. 1 we cannot afford to have significant 
numerical diffusion. As in previous works (Hartmann et 
al. 2006; Derksen 2008), TVD discretization with the 
Superbee flux limiter for the convective fluxes (Sweby 
1994) was employed. We step in time according to an 
Euler explicit scheme. 

A BENCHMARK: PLANE POISEUILLE FLOW 
Consider the flow between two fixed parallel plates at 
mutual distance H driven by a body force (force per unit 
volume) f0 in the wall-parallel direction (see Figure 2 for a 
definition of the flow and its coordinate system). The 
body force results in a linear shear stress profile in the 
liquid: 0zx f zτ = − . In zero-inertia flow this directly 
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translates in a shear rate 
( )

0

,a

f z
z t

γ
μ
−

=& . Given Eq. 2, and 

since the system is homogeneous in x-direction the 
transport equation in the network parameter (Eq. 2) can be 
written as 

 
( ) ( )0

1 2 1
1
f z

k k
t
λ λ λ

μ αλ∞

∂
= − + −

∂ +
 (4) 

In the center of the channel (z=0), Eq. 4 implies that λ  
depends on time according to an exponential function with 
time constant 1

2
k − . In order to compare the implications of 

Eq. 4 for the way the network parameter and the velocity 
field depend on space (z) and time, it was integrated 
numerically (with a fourth-order Runge-Kutta scheme) for 

z in the range 
2 2
H Hz− < < . This provides us with a 

representation of ( ),z tλ  that subsequently is used to 

determine ( ),a z tμ  (with help of Eq. 2) and integrate the 

velocity profile from the notion that 0x

a

u f z
z μ

∂
= −

∂
 with 

0xu =  at 
2
Hz = ± . The results of this semi-analytical 

exercise can be directly compared with our numerical 
simulations. 
 

 
 
Figure 2: Plane Poiseuille flow definition. 
 
In the simulations we start from a zero flow field of 
Newtonian liquid. Once that flow has fully developed (to 
a parabolic velocity profile in this case) the thixotropic 
rheology is switched on and we monitor the development 
of the network and associated apparent viscosity and 
velocity field. As the velocity scale we take the centerline 

velocity of the Newtonian liquid: 20
0

1
8

fu H
μ∞

= ; the 

Reynolds number has been defined as 0Re u Hρ
μ∞

= . The 

results in Figure 3 show very good agreement of the 
simulations and the semi-analytical solution. The time 
scales over which the flow switches from the Newtonian 
steady state to the non-Newtonian steady state, as well as 
the profiles of λ  and xu  are well represented by the 
simulations. We see the development of the λ -profile in 
time: starting from zero λ  increases quickest in the center 
of the channel where there is no deformation. Roughly at 

0 2

2.550 Ht
u k

= = after switching on the thixotropic 

rheology the λ  profile is close to steady. In the same time 
range the velocity profile has adapted itself to the new 
rheology; it has evolved from parabolic to more plug-flow 
like. 
 

The assumption of zero-inertia as inferred to obtain the 
semi-analytical solution appears critical. In the right panel 
of Figure 3 we compare (at a single moment in time) the 
semi-analytical solution with simulation results at 
different Reynolds numbers. The trend is that the 
agreement clearly benefits from reducing the Reynolds 
number in the simulations. The results with Re<1 can 
hardly be distinguished and are close to the semi-
analytical solution. 
 

 
 
Figure 3: Left: λ  profiles at various moments 
( 0 /tu H = 1.6, 3.3, 13, 52, and 210; λ  increases with 
time) after switching on thixotropic rheology. Middle: 
velocity profiles ( 0 /tu H = 0, 1.6, 3.3, 13, and 52; velocity 
decreases with time). Right: velocity profiles at 

0 /tu H = 1.6 for four different Reynolds numbers. The left 
and middle panel have Re=0.73. Drawn curves: semi-
analytical solutions; symbols: simulations. 

THIXOTROPIC LIQUIDS IN MIXING TANKS 
We now turn to flows of thixotropic liquids in mixing 
tanks. The geometry of the mixing tank and the impeller 
are given in Figure 4, along with a definition of the 
coordinate system. The impeller, a Rushton turbine, is a 
de-facto standard impeller in mixing research and 
therefore allows for comparison with a large body of 
numerical and experimental data regarding Newtonian and 
(to a lesser extent) non-Newtonian liquids. It consists of a 
round disk with six flat blades mounted on its perimeter. 
The tank has baffles at its perimeter that enhance mixing 
as they prevent the liquid from rotating largely as a solid 
body under the influence of the revolving impeller. In this 
standard configuration all tank and impeller dimensions 
can be derived from the tank diameter T (see Figure 4), 
e.g. the impeller diameter D=T/3. 
 

 
 
Figure 4: Stirred tank geometry and (r,z) coordinate 
system. Left: side view, right: top view. 
 
In mixing of Newtonian liquids in stirred tanks the 

Reynolds number is traditionally defined as 
2

Re NDρ
μ

=  

with N the impeller speed (in rev/s). In analogy we here 
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define the Reynolds number as 
2

Re NDρ
μ∞

= . The 

additional three dimensionless numbers if thixotropic 
liquid mixing is being considered are chosen as follows: 

2

Db N
k

=  the Deborah number (the ratio of liquid over 

flow time scale), 2

1

1S ck
k N N

γ
= ≡

&
 the dimensionless shear 

rate (inspection of Eq. 3 shows that 2

1
c

k
k

γ ≡&  is the shear at 

which the liquid typically transits from infinite-shear to 
zero-shear behaviour, also see Fig. 1), and α  where 1α +  
is a viscosity ratio. 
 
The tanks to be simulated are of lab-scale size with a tank 
volume of typically 10 liter. A 10 liter tank with 
geometrical layout as given in Figure 4 has a diameter 
T=0.234 m. The impeller diameter D=T/3=0.078 m. With 
a liquid having μ∞ = 10-2 Pa·s and ρ=103 kg/m3 we 
generate mildly turbulent flow if the impeller spins with 
N=10 rev/s: Re=6·103. Commonly used thixotropic liquids 
have time constants in the range of 0.1 to 10 s (see e.g. 
Dullaert & Mewis 2005), so that the Deborah numbers fall 
in the range 1 to 100. To end up with laminar flow if the 
network would be fully developed ( 1λ =  everywhere) we 
set 1 100α + = . To limit the parameter space, we set the 
shear rate number to the fixed value of S=1 which 
represents the situation with the typical shear rate in the 
tank (N) being the same as the liquid’s characteristic shear 
rate cγ& . 
 
As mentioned above, the liquid flow dynamics was 
resolved using the lattice-Boltzmann method. In its basic 
implementation (as used in this study) the method applies 
a uniform, cubic grid. The spatial resolution of the grid 
was such that the tank diameter T equals 180 grid spacings 
Δ. The time step is such that the impeller revolves once in 
2000 time steps. The rotation of the impeller in the static 
grid is represented by an immersed boundary technique. 
As the default situation, the simulations were started from 
a zero liquid velocity field and a uniform network 
parameter 0λ =  (no network). Our primary interests are 
in how the flow develops towards a (quasi) steady state, 
what flow structures can be observed in (quasi) steady 
state, and what the influence of the Deborah number is on 
all this. 

Results 
In Figure 5 we show the development of the tank-average 
structure parameter λ  after starting from a zero flow, 

and zero λ  field. Clearly, the higher Db the slower the 
network develops. In addition, the path along which the 
three cases approach quasi steady state is very different. 
At Db=1 the network builds up quicker than the flow that 
starts around the impeller can penetrate the bulk of the 
tank. This results in an initial overshoot of λ  with λ  
quickly increasing in the still quiescent parts of the tank. 
In a later stage the flow erodes the networked zones in the 
tank and  decreases again after which a quasi steady state 
is reached. For Db=10 the development towards steady-
state has a relatively fast stage (with a time scale 

associated to it of the order of 1
2k − ) and a slow stage 

taking of the order of 150 impeller revolutions. At the 
highest Db (Db=100) the system very gradually goes 
towards steady state. 
 

 
Figure 5: Time series of the tank-averaged λ  for three 
values of Db when starting up from a zero flow, and zero 
λ  field. 
 
The Db=1 case gives rise to a very inhomogeneous 
distribution of the apparent viscosity in the tank, with low 
levels close to the impeller and in the stream emerging 
from the impeller where the network is destroyed 
continuously due to liquid deformation, and high levels in 
the dead zones in (for instance) the upper corners (see 
Figure 6, upper center panel). This distribution creates 
active and relatively inactive regions in the tank. For 
comparison we also show in Figure 6 (upper left panel) a 
distribution of the apparent viscosity if Db 0= , which we 
get if instead of a thixotropic liquid we have a time 
independent liquid with the steady-state rheology of Eq. 3. 
The apparent viscosity distributions with Db=1 is very 
similar to the one with Db=0 indicating that for Db=1 (and 
the rest of the current conditions: flow geometry, other 
dimensionless numbers) the time dependence of the liquid 
is not strongly felt. 
 
If Db=100, the liquid’s time scales are much longer than 
almost all relevant flow time scales. In other words, the 
mixing is very fast compared to the build-up and 
breakdown of the network which leads to a fairly uniform 
(well-mixed) distribution of the apparent viscosity, see 
Figure 6 (upper right panel). This situation is comparable 
to a very slow chemical reaction taking place in a 
vigorously mixed tank. Under such conditions the tank 
can be considered ideally mixed with approximately 
uniformly distributed concentrations. At the specific 
settings of this simulation, the level of the apparent 
viscosity ultimately gets of the order of 20μ∞  throughout 
the tank which corresponds to a Reynolds number of 

2

Rea
a

NDρ
μ

= ≈ 300, indicating transitional flow. 

 
The most intriguing case is the one with Db=10. Some 40 
revolutions after startup the system tends steady state. 
However, beyond 50 revolutions λ  starts slowly but 
systematically increasing again until it levels off after 150 
revolutions after start-up. What happens in the slow part 
of the flow’s development (between 50 and 150 
revolutions) is a slow build-up of the network in the upper 
part of the tank which gradually pushes the impeller 
stream down until the liquids only recirculates underneath 
the impeller, see Figure 6 (lower three panels). 
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Figure 6: Snapshots of the apparent viscosity in a vertical 
cross section through the tank. Top row from left to right: 
Db=0 at tN=60, Db=1 at tN=60, Db=100 at tN=250. 
Bottom row: Db=10 and (from left to right) tN=50, 100, 
210. 

SUSPENSIONS INVOLVING THIXOTROPIC 
LIQUIDS 
Dense solid-liquid suspensions involving non-Newtonian 
carrier fluids are of practical relevance in applications 
such as oil sands mining, drilling of oil and gas wells, and 
food and pharmaceutical processing. Fundamental insights 
in the interactions of solid and liquid at the level of the 
solid particles could be relevant for a better understanding 
of the processes underlying these applications, and thus 
could help in process design and optimization. Also, 
process modeling (partly) based on computational fluid 
dynamics (CFD) at the macro-scale has become a viable 
and widely used approach. Multiphase CFD, however, 
requires closure relations for meso-scale phenomena such 
as the hydrodynamic interaction between the phases 
involved (Li & Kuipers 2003). A lot of research effort has 
been invested in developing and assessing closures for 
multiphase systems with a Newtonian carrier phase, such 
as drag force relations for random particle assemblies 
(Kandhai et al. 2003; Van der Hoef et al. 2005), and 
models for turbulent and granular fluctuations. In 
situations where the carrier phase behaves as a non-
Newtonian liquid, the meso-scale fluid mechanics 
(hydrodynamic interactions, dispersed phase behavior) 
potentially becomes more complicated.  This may have 
significant implications for the applicability of closures 
(based on Newtonian fluid concepts) for the meso-scale 
phenomena of suspensions with non-Newtonian liquids. 
 
With the above in mind we have carried out computational 
research that aims at assessing non-Newtonian effects in 
dense solid-liquid suspensions, with a focus on the drag 
force and the way it depends on liquid properties and the 
solids volume fraction. The study is limited to suspensions 
consisting of monodisperse spheres with diameter d in a 
purely viscous thixotropic carrier liquid described by Eqs. 
1 & 2. The sphere assemblies with solids volume fraction 
φ  are random and homogeneous; there are no large-scale 
(solids volume fraction) gradients. The liquid is forced 
through the spheres with a superficial velocity su  such 
that the flow is slow, i.e. dominated by viscous forces 
rather than inertia. The computations measure the drag 

force on the spheres. The average drag force on a sphere 
DF  is normalized with the Stokes drag on a sphere in a 

Newtonian liquid with viscosity μ∞ : *

3
D

D
s

FF
duπμ∞

≡ . 

 
The flow of thixotropic liquids through monosized sphere 
assemblies can be pinned down with a set of five 
dimensionless numbers. In this paper these have been 

chosen as Re su dρ
η∞

∞

= , 
2

Db su
dk

= , S c

s

d
u
γ

=
&

, α , and φ . 

This five-dimensional parameter space we limit by only 
considering a single, low value of Re 0.06∞ = . We also 
fix the viscosity ratio to 1 16α + = . Since 0α >  the low 
value of the Reynolds number implies creeping flow 
conditions at all times. 
 
The resolution of the simulations is such that the sphere 
diameter d is equal to 24 grid spacings. The diameter d is 
the so-called hydrodynamic diameter of the spheres. A 
calibration procedure (Ladd 1994) is used to relate the 
hydrodynamic diameter to the diameter in the lattice. This 
calibration depends on the viscosity, it has been carried 

out for 11
2

μ μ α∞
⎛ ⎞= +⎜ ⎟
⎝ ⎠

.  

Results for shear-thinning time independent liquids 
Time-independent liquids have 2k →∞  so that Db=0. 
The two degrees of freedom left are the solids volume 

fraction φ  and S c

s

d
u
γ

=
&

. 

    
 

    
 

 
 
 
Figure 7: xz-cross sections through the flow domains, 
with the horizontal (x) direction the direction of the mean 
flow. Shear-thinning, time-independent liquids. Colors 
indicate the apparent viscosity. From top to bottom  
φ =0.373, 0.459, and 0.530. From let to right S=1, 4, and 
16 respectively. 
 
In Figure 7 we show contour plots of the distribution of 
the apparent viscosity in a cross section through the 
suspension after steady state has been reached. The cross 
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0.8 ( )1
aη

η α∞ +
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0.6 

0.8 

0

aμ μ
μ μ

∞

∞

−
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sections span the xz-plane of the cubic periodic domain 
with the x-direction the streamwise direction. The white 
circular disks are cross sections thorough the spherical 
particles. The higher S, the higher the apparent viscosity 
in the suspension gets. This is not surprising. At higher S 
(and thus higher cγ& ) the transition from zero-shear 
viscosity to infinite-shear viscosity takes place at higher 
deformation rates (see Figure 1). Also the range of 
viscosities encountered in the suspension is a function of 
S: if the characteristic shear rate cγ&  of the liquid is of the 
same order as the shear rates encountered in the interstitial 
liquid, a relatively broad range of viscosities is 
anticipated. 
 
The above observations are presented in a more 
quantitative sense in Figure 8. The figure shows (for two 
solids volume fractions) the doubly normalized drag force 

*
**

*

0

D
D

D S

FF
F

=

≡ , the average apparent viscosity in the 

suspension, and (as a measure of the spread in viscosities 
in the liquid domain) the root-mean-square (rms) values of 
the deviations from the mean apparent viscosity. 
Interestingly ( )rms aμ  goes through a maximum with the 
location of the maximum dependent on the solids volume 
fraction: the higher φ  the further the maximum shifts to 
higher S. At higher φ  the space between the spheres gets 
narrower and (since the superficial velocity has a fixed 
value) the deformation rates in the liquid increase. As a 
result, the distribution of viscosities gets wider for higher 
S.  
 

 
Figure 8: Doubly normalized drag force **

DF  (top); 
average apparent viscosity (middle); and root-mean-
square values of the apparent viscosity as a function of S 
for two solids volume fractions: left: φ =0.373, φ =0.530. 
Shear-thinning, time-independent liquids. 
 
Eventually, the drag force is the result of an interplay 
between the liquid flow through the suspension and the 
resulting spatial viscosity distribution. The notion of the 
interaction between cγ&  and deformation rates in the 

suspensions proofs helpful in scaling the doubly 
normalized drag force **

DF . Critical regions in the 
suspension are the waists between nearby spheres. As a 
measure for the size of these waists we take 

1/ 3

1rcpd
φ

δ
φ

⎡ ⎤⎛ ⎞
⎢ ⎥≡ −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 with 0.62rcpφ =   the solids volume 

fraction at random close packing. In Figure 9 we plot **
DF  

as a function of c

su
δγ&  for all cases with time-independent 

rheology (Db=0) considered. The drag force behaves 
fairly consistently over the wide range of solids volume 
fractions considered. 

Results for thixotropic liquids 
Examples of steady-state viscosity distributions with 
thixotropic liquids are given in Figure 10. The most 
visible effect of thixotropy is a smearing-out of the 
viscosity fluctuations. This effect sets in beyond Db=0.2 
(the viscosity fields at Db=0 and Db=0.2 are almost the 
same). The smearing out is due to the time it takes to build 
up or break down the network. In an infinitely fast (Db=0) 
liquid, locations where the network is formed or broken 
down coincide with places of respectively low (e.g. bigger 
voids in the suspension) and high (shear layers at solid 
surfaces) deformation rates. If the liquid needs time to 
respond to deformation conditions (Db>0) the break-down 
and build-up processes are less localized with a smoother 
apparent viscosity field as the result. 
 

 
Figure 9: Doubly averaged drag force as a function of 

c

su
δγ&  with δ  defined in the text. The different symbols 

relate to different solids volume fraction as indicated. 
Shear-thinning, time-independent liquids. 
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Figure 10: xz-cross sections through one flow domain, 
with the horizontal (x) direction the direction of the mean 
flow. φ =0.420, S=4. Thixotropic simulations with (from 
left to right and top to bottom) Db=0, 0.2, 1.0, 5.0, 25.0, 
125.0. Colors indicate the apparent viscosity. 
 

 
Figure 11: Sample simulation results with thixotropic 
liquids. From bottom to top: triply normalized drag force, 
rms of viscosity, and average viscosity as a function of 
Db. Left: φ =0.530; right: φ =0.330. The different 
symbols denote different values of S as indicated. 
 
In Figure 11 sample results of our thixotropic simulations 
are displayed, with Db as the independent variable. The 

triply normalized drag force is defined as 
**

***
**

Db 0

D
D

D

FF
F

=

≡ . 

In the way as displayed in Fig. 11, the behaviour is quite 
similar for different solids volume fractions, so that we 
only show the extremes of φ  as studied here. The effect 
of a smoother apparent viscosity field due to thixotropy is 
an increase in the drag force; in all cases considered 

*** 1DF > . The effect of thixotropy on the drag force is not 

very big; the maximum increase is approximately 20%, 
occurring for high Db in situations where the 
corresponding Db=0 system had a large ( )rms aη . 

SUMMARY 
In this paper we described simulations at the equipment 
(macro) scale and at the particle (meso) scale of the flow 
of thixotropic liquids. Geometrical complexity (mixing 
tanks, interstitial liquid in suspensions) was essential in 
these application, and therefore computational efficiency 
was crucial. Purely viscous thixotropic behaviour can be 
simulated with a Navier-Stokes solver that is able to 
handle variable viscosity, combined with a (non-diffusive) 
scalar transport solver for keeping track of local network 
integrity. The network integrity is fed back to the Navier-
Stokes solver by means of a relation between network 
integrity and apparent viscosity. As the Navier-Stokes 
solver we employed a lattice-Boltzmann scheme, for 
solving the scalar transport equation a finite volume solver 
with TVD discretization. The latter for minimizing 
numerical diffusion. The feasibility and accuracy of the 
approach was assessed with a plane Poiseuille flow 
benchmark. 
 
Applying this approach to laminar and transitional stirred 
tank flow showed the essential role of the liquid’s time 
scale on the overall flow behaviour in the tank. Liquids 
with the same steady state rheology, but different time 
response (i.e. flow systems with different Deborah 
number) evolve differently towards markedly different 

steady states. At 
2

Db N
k

= =1 the liquid behaves almost the 

same as its infinitely fast, shear thinning equivalent. At 
Db=100 the liquid is so slow compared to mixing that the 
level of network development is typically uniform in the 
tank leading (in the case investigated here) to laminar 
flow. At the in-between Deborah number of 10 the flow 
develops in a peculiar manner, being the result of a subtle 
interplay between flow and liquid time scales. In this latter 
case the liquid is mobilized in a limited portion of the tank 
volume only. 
 
Subsequently we studied drag forces in random, 
monosized sphere assemblies immersed in shear thinning 
and thixotropic liquids. As a result of the tortuous flow 
through the sphere assembly and its associated broad 
spectrum of deformation rates, shear thinning effects on 
drag are significant with a strong influence of the solids 
volume fraction (the higher, the more tortuous the flow). 
The effect of the solids volume fraction could be quite 
well captured by scaling the liquids characteristic shear 
rate thinning effects with the superficial velocity over the 
average waist of two neighbouring spheres. The effect of 
thixotropy is a smoothing effect on the apparent viscosity 
in the suspension, which in general leads to increased (by 
some 20%) drag. 
 
An essential feature when studying thixotropic (and more 
generally non-Newtonian) flow is the rapid growth of the 
parameter space with increasing complexity of the liquid 
model. As an example: in Newtonian stirred tank flow – 
once the flow geometry has been defined – the only 
dimensionless number that matters is the Reynolds 
number (assuming we do not have a free liquid surface). 
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In this paper (with a relatively simple liquid model) we 
needed four dimensionless groups to pin down the flow. 
This makes our results less general (i.e. more specific to 
the model used). However, the tools developed here can 
be used to study specific (industrial) liquids. Furthermore, 
the simulations do show interesting features related to 
liquid mobility (in mixing tanks) and drag force behaviour 
(in solid-liquid suspenions). 
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