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Abstract. The nonlinear dynamics of thin liquid films falling on a vertical plane is investigated
numerically using the first-order time-dependent weighted-residual integral boundary layer
(WRIBL) equations derived by Ruyer-Quil and Manneville (2000). We find that sufficiently
close to the stability threshold of the system with periodic boundary conditions, the emerging
waves are of y:1-type. However, beyond a secondary bifurcation threshold, v»-type waves emerge
and can coexist with y; waves. The analysis of the WRIBL equations reveals the existence
of both periodic traveling wave (TW) and aperiodic non-stationary wave (NSW) flows. The
bifurcation structure of WRIBL equations is found to include three distinct regions: (i) linearly
stable, (ii) bounded wave flows, (iii) reverse-flow solutions.

1. Introduction

Falling liquid films are often encountered in various technological applications, such as
evaporators, condensers, heat exchangers, coating, and physical phenomena, such as gravity
currents and lava flows. Significant progress has been attained in the analysis of thin
(macroscopic) liquid films. Oron et al. [1] unified such analyses into a comprehensive framework
in which the special cases naturally emerged. Employing the long-wave approximation Oron et
al. [1] derived a generic evolution equation describing the spatio-temporal dynamics of a liquid
film subjected to various physical mechanisms.

Along with direct numerical simulations of the dynamics of falling film flows, several model
evolution equations were derived using various asymptotic approaches in the longwave limit.
Among these one finds Benney [2] and Shkadov equations [3]. A novel analytical approach was
introduced by Ruyer-Quil and Manneville [4, 5] extending the boundary-layer theory developed
by Shkadov [3]. The Shkadov theory was shown [6, 7] to be successful in describing the dynamics
of falling films on static vertical and inclined substrates for intermediate Reynolds numbers
(R < 300). However, it failed to match the linear stability threshold of the system, as was derived
by Benjamin [8] using Orr-Sommerfeld equations and by Yih [9] employing long-wave expansions.
The theory developed by Ruyer-Quil and Manneville [4, 5] for both first- and second-order
approximations of the Navier-Stokes equations can be classified as weighted-residual integral
boundary layer (WRIBL) theory. It corrected the inability of the Shkadov model equations to
match the linear stability threshold of the system and was found to yield bounded solutions for
a wide range of Reynolds numbers. Recently, Scheid et al. [10] carried out the investigation of
traveling wave solutions of the first-order WRIBL equations with various boundary conditions.



However, the time-dependent evolution of the falling films, as described by the first-order WRIBL
equations with periodic boundary conditions, has not yet been investigated.

The objective of this paper is to investigate the nonlinear dynamics of falling films on a
vertical plane in the framework of the first-order time-dependent WRIBL equations augmented
by periodic boundary conditions and to compare with the results of the studies of the WRIBL
equations derived for traveling wave solutions [10].

2. Governing evolution equations
We consider a two-dimensional flow of an isothermal liquid film of the average thickness d on
a solid vertical planar surface in the gravity field g. The relevant properties of the liquid are
density p, kinematic viscosity v and surface tension o.

In order to analyze the spatio-temporal evolution of the film interface we employ here the
first-order WRIBL evolution equations derived by Ruyer-Quil and Manneville [4] in the non-
dimensional form
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Here h = h(z,t),q = q(z,t) are, respectively, the local film thickness and the leading-order
approximation of the volumetric flow rate
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Both h and g depend on the spatial coordinate along the solid plane  and time ¢, u is the leading-
order longitudinal, z-component of the non-dimensional flow field, y is the spatial direction
normal to the wall, and « is the Kapitza number given by
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Equations (1),(2) are written in dimensionless form, while the dimensionless spatial
coordinate x and film thickness h, time ¢, the longitudinal fluid velocity component u and the
flow rate g scale the corresponding physical variables in terms of viscous length I, = (v2/ g)l/ 3,
viscous time , = (v/g%)'/3, viscous velocity U, = (rg)'/® and the value U, l,, respectively.

Equations (1),(2) are hereafter numerically solved with periodic boundary conditions for both
h and ¢ in the domain 0 < z < L and for various initial conditions, one of them, namely

2
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is referred to as a ”standard” initial condition. The value of ¢ is typically varied between 0.05
and 0.1. Note that the boundary-value problem at hand, Egs.(1),(2),(5), is governed by two
parameters, one of which k is a pure material property and the other, hy is related to the
strength of the velocity field.

The values hy and gy appearing in Egs.(5) are related to the Reynolds number based on the
maximal value of the film velocity
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respectively, the film thickness and the volumetric flow rate of the base Nusselt flow.

In order to compare the results of our investigation with other work available in the literature,
it is important to relate between various values used elsewhere. Oron and Gottlieb [11] employed
in their investigations of the first-order Benney equation the parameters R, the rescaled Weber

number S given by
20
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and the small order parameter ¢ defined as the ratio between the mean film thickness and the
characteristic wavelength of the interfacial disturbance. We note that Scheid et al. [10] used
the value of the Reynolds number based on the average film velocity, Re = %R, and the value
of the fundamental wavenumber k corresponding to the size of the periodic domain of L. These
values are related in addition to the relationships given in Eq.(7) by
2 kh N
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In what follows, we will adopt the notation of R,e and W employed in [11].

The first observation that can be made on the basis of Egs.(1),(2) is that if their solution is
a traveling wave (TW) moving with the speed ¢, h = h(§),q = q(&) with £ = 2 — ct, then Eq.(1)
implies that

S =
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where A is a constant. However, in spite of this simplification Egs.(1),(2) cannot be further
reduced, as the obtained set of equations will in this case consist of the ordinary differential
equation arising from Eq.(2) with two unknown constant values ¢ and A. Moreover, as will be
demonstrated below, not all solutions of Egs.(1),(2) are TW.

3. Linear stability analysis of Eqs.(1),(2) B
We linearize Egs.(1),(2) with B = 0 around the base state h = hy, ¢ = gy with h = hy+0h, g =
gy +6q, § < 1, and introduce normal mode perturbations in the form of

h = nexp (ikz + wt), § = Cexp (ikz + wt), (11)

where k = 27n/L and w are their wavenumber and complex growth rate, respectively, and n is
the integer number of the harmonics. Substituting Eq.(11) into the linearized version of Egs.(1),
(2) yields the dispersion relation

1 2
5 Lpavy ik[% LDV PR ) (12)

2
w” + w(
wy TR, T

- _+_ R
2h%, 7 T hy
The value of w = 0 cannot satisfy Eq.(12), therefore the instability can set in only via Hopf
bifurcation, as expected by observation of the system at hand. Assuming that one of the
eigenvalues w to be purely imaginary w; = {2 and the other to be a general complex number
wo = a + 1, leads to the following values of the unknowns

o= -2 <0, Q= —kh% <0 ﬂ:ikhQ (13)
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The negative sign of a suggests that the second mode, corresponding to ws is stable for all n.
The negative sign of ) suggests that the wave propagates in the downward direction, i.e., in the
direction of positive . The dimensionless wave celerity at the stability threshold of the system
(critical frequency) is obtained from Eqs.(12),(13) as

Cc1 = h%\f (14)



The stability threshold for the n-th mode is also obtained from Egs.(12),(13) in the form
R=R,=5k(—)% n=12,..., (15)

and, in particular, the Hopf stability threshold of the system is given by
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We will hereafter concentrate on two specific cases referred to as case A, in which W = 1000, ¢ =
0.04/2m (equivalent to kk? = 1.6), and case B, in which W = 1000, R = 3.1 (equivalent to
Kk = 3374.9,hy = 1.837). These two cases facilitate the comparison with the previous studies
related to the Benney equation [11, 12] and to Egs.(1),(2) [10].
It follows, therefore, from Eq.(15) that in case A (W = const,e = const)

R,=n?R;, n=1,2,... (17)

with R; = 2 for the chosen values of W and e. Similarly, it follows from Eq.(15) that in case B
(W = const, R = const)

en= n=1,2,... (18)
n
with
e1 = (R /5W)"/?/x, (19)

which yields €1 = 0.007926 for the chosen values of W and R. as obtained for the Benney
equation [11, 12].

Figure 1 displays the stability diagram of the falling film for W = 1000. The curve n =1
represents the Hopf stability threshold, as given by Eq.(19), and divides the ¢ — R plane into two
domains, one of which (I), located above this curve is the domain of linear stability of the system,
while the other (IT and III combined), below the curve is that of its instability. The curves n = 2
to n = 6 show the stability thresholds of the respective n-th modes, as given by Eq.(18). Both,
horizontal and vertical dot-dashed lines show the ranges, where our numerical investigation has
been carried out in cases A and B, respectively. The domain of the film instability, i.e. below
the curve n = 1, is further subdivided into two subdomains IT and III, where the boundary
between these is the dashed line marked by black circles.

4. Numerical investigation

It is readily seen that Egs.(1),(2) are not invariant under the transformation h — hy — h, ¢ —
gn — g, hence their solutions are not expected to be symmetric with respect to the equilibrium
state, h = hny, ¢ = gn- Thus, in general hp,ap — hn # hn — hmin- To characterize the
asymmetric solutions for Egs.(1),(2) we use here the classification made by Chang [7] for
the waves emerging in falling liquid films: (i) the 7;-family whose representatives satisfy the
condition Apey — AN < AN — Apin, 1. €., depression or ”hole” waves, and (ii) the yo-family whose
representatives satisfy the condition hyey — Ay > AN — hpin, 1. €. elevation or "hump” waves.

4.1. Case A

4.1.1. Bifurcation structure As noted above, the stability threshold of the system in case A
is given by R = R; = 2. To investigate the film dynamics in the unstable domain we solve
Egs.(1),(2) numerically in the range of 2 < R < 35 (1.587 < hy < 4.121) and the results are
shown hereafter. Figure 2 presents the normalized amplitude H = hy,q5/hn of the film thickness
given by the solution for Egs.(1),(2) reached after the transient period as a function of R. In
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Figure 1. Stability diagram for Eqs.(1),(2) as presented in the ¢ — R plane. The curves n =1
to n = 6 given by Eqs.(18),(19) show the instability thresholds for the n-th mode, thus n =1 is
the instability threshold of the system. The horizontal and vertical dot-dashed lines indicate the
parameter values investigated here in the framework of cases A and B, respectively. The dashed
curve marked with black circles displays the border line below which the value of () becomes
negative.

this figure the value of H is indicated by an appropriate point when the corresponding solution
is a traveling wave (TW), and by a bar showing the variation range of H in the large-time limit
when the corresponding solution is a non-stationary wave (NSW). It is found that the solutions
in the domain 2 < R < 6.6 (1.587 < hy < 2.363) are TW of the ~;-family, represented by
the solution for R = 5 (hy = 2.154). In the range of 6.7 < R < 7.6 (2.375 < hy < 2.477),
we find coexisting TW of both ;- and yo-families. The abrupt termination of the ~s-branch
at R =~ 6.7 (hy = 2.477) suggests the existence of secondary subcritical pitchfork bifurcation
at R = R, and due to this, the existence of another, unstable TW branch in the interval
6.6 < R < R. This unstable branch cannot be recovered by numerical solution of the pertinent
partial differential equations. In the domains 7.7 < R < 31 (2.488 < hnxy < 3.958) and
33 < R < 35 (4.041 < hy < 4.121), TW of the 7o-family are only present. We also find
that solutions of Egs.(1),(2) within the interval 31.5 < R < 32.5 (3.979 < hy < 4.021) are
NSW.

4.1.2. Traveling wave solutions The results of our computations show that in the vicinity of
R = R,, the number of wave humps increases by one complying with the results of the linear
theory. However, we have not found replicated waves defined by TW flows consisting of two or
more identical humps, and all multi-humped flows we have obtained, consist of one major wave
and one or more smaller ones.
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Figure 2. The bifurcation diagram for case A, as obtained from Egs.(1),(2), that shows the
value of the normalized wave amplitude H as a function of R. The black circles and triangles
represent TW flows of the ;- and the o-types, respectively, while the error bars represent the
NSW flows showing the variation of H. The dashed curve shows the value of H, as obtained
from the direct numerical simulations of TW solutions of Egs.(1),(2) [10]. The vertical lines
demarcate between the various regions: I- the linearly stable domain; II- the domain where
only TW flows of the y;-type emerge; I11- the domain where TW flows of both v and o-types
coexist; IV- the domain where only TW flows of the ys-type emerge; V- the domain where the
solutions lose the positivity of Q.

It is important to emphasize that the y;-type TW computed here in the range of R < R < 7.4
(h1 < hy < 2.455), are very similar in their amplitude and topology to those obtained by Scheid
et al. [10] using AUTO software designed for search for TW solutions.

Scheid et al. [10] investigated TW solutions for Egs.(1), (2) and found that the -y;-branch
bifurcating at R = R; exists until R = 9 (their Re = 6) and corresponding to hy = 2.621,
extends even further into the domain of higher R, as communicated to us by B.Scheid. We
have attempted to follow our 7;- branch from R = 7.4 (hy = 2.455) and on, using both the
"standard” initial condition, the continuation method starting from the solutions of the v;-type
of [10] and also from the solutions of our «;-branch at R =~ 7.4 (hy =~ 2.455) as initial conditions.
However, the ensuing evolution has resulted in the emergence of the corresponding TW solutions
on the 7y9- branch. Therefore, our conclusion is that the «y;- branch becomes unstable for R > 7.4
(hn > 2.455).

As follows from our computations, all solutions of Egs.(1),(2) in case A are TW in the range
2 <R <31 (1.587 < hy <3.958) and 33 < R < 35 (4.041 < hy < 4.121), with a general trend
of increasing the peak-to-peak sizes of both H and () with increase of R. Along with increase
of the peak-to-peak size of (), there are both increase of )4, and decrease of Q,,in, S0 that at



R = 17 (hy = 3.240), the value of Q;n approaches zero, and for R > 17 (hy > 3.240), Qmin
becomes negative and remains negative in a certain range X;(¢; R) < X < Xo(t; R) below the
depression of the film interface. This range expands with increase of R.

4.1.3.  Non-stationary wave solutions As noted above, Egs.(1),(2) admit along with TW
solutions also NSW solutions. In case A the NSW flows are obtained in the range of relatively
large Reynolds numbers, 31.5 < R < 32.5 (3.979 < hy < 4.021).

4.1.4. Coezisting solutions As noted above, a domain of coexisting y1- and yo- TW was found
to be 6.7 < R < 7.6 (2.375 < hy < 2.477), see region III in Fig.2. It is important to note
that the solutions displayed in Fig.2 were obtained using the ”"standard” initial condition and
the method of continuation from the solutions obtained for adjacent values of R. However, the
coexisting yo- branch whose emergence is noted above, was obtained in the range 6.7 < R < 7.6
(2.375 < hy < 2.477) solely by initiating the continuation from TW at R =7 (hy = 2.410).

4.2. Case B

4.2.1. Bifurcation structure Figure 3 displays the bifurcation diagram for case B in the plane
e — H. We have divided the investigated domain 0.002 < ¢ < 1 (6.840 x 1073 <k< k1) into
several regions where solutions of Eqgs.(1),(2) possess different properties. In region I (¢ > 1) the
base Nusselt state h = hy, g = gy is linearly stable. In region IT (0.0045 < ¢ < &1) Egs.(1),(2)
display only TW solutions of the 7y;-type shown by the black squares. This y;-branch continues
a little further up to the point at e = 0.00425 (k = 1.454 x 10~?) located in the vicinity of the
intersection point (IP) found by Scheid et al. [10], see their Fig.3. The amplitude H of these
solutions is in a very good agreement with the results obtained by Scheid et al. [10] for TW
solutions. In the narrow region III located in the neighborhood of IP the coexistence between
TW flows of both ;- and v,-families, shown by black triangles, takes place. This coexistence
is similar to that obtained in case A and we again conjecture that the emergence of the va-type
TW is due to a secondary subcritical pitchfork bifurcation. In region IV the ys-type TW flow
found within region IIT at £ = 0.00435 (k = 1.488 x 10~2) is followed by the ,-branch indicated
by the black triangles, up to € = 0.00374 (k = 1.279 x 10~2). The emergence of the TW branch
of yo-type following the domain of coexistence of both types of TW is similar to case A. However,
the differences between these two cases are found to the left of region IV. Region V contains
interdispersed solutions of the ys-type both TW and NSW solutions (shown by error bars with
triangles), as well as NSW solutions switching between the ;- and the y2-types (shown by error
bars with x), and also TW flows of the 7;-family (shown by black squares). The latter represent
replication of uni-humped TW solutions of Eqs.(1), (2) located along the ascending branch of
TW within region II.

In addition to the waveforms described above, there exists a ;-type NSW (shown by error
bars with black squares) which appears in the vicinity of the lowest TW at ¢ ~ 0.00425. This
point is within region IV and may be reminiscent of the 7;-branch of TW going through IP
found by Scheid et al.[10]. Thus, we conjecture that the -y;-branch found by Scheid et al.[10]
is unstable. We recall that a similar abrupt termination of the <y;-branch is found in case A
beyond R = 7.4 (hy = 2.455) corresponding to their Re = 4.9.

4.2.2. Traveling wave solutions Comparing between the solutions obtained here and the TW
solutions found in [10] and shown there in Fig.4, both for Egs.(1),(2), we note that the TW
solutions presented in Fig.4a,b,c of Ref.[10] for £ = 0.0256,0.0169 and 0.0128, respectively, agree
well with the corresponding flows we obtain for € = 0.00748,0.00494 and 0.00374, respectively.
However, our solution for € = 0.002456 is found to be an NSW, and not TW, as that displayed
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Figure 3. The bifurcation diagram for case B, as obtained from Eqgs.(1),(2) that shows the
normalized wave amplitude H as a function of €. The black squares and triangles represent TW
flows of 71- and 72-type, respectively, as obtained from Eqgs.(1),(2). The error bars represent the
variation of H in the case of the corresponding NSW flows: marked by a black triangle or square
when the corresponding NSW is of the ys- or ~;-type, respectively, and marked by x when it
changes its type. The vertical lines n = 1 to n = 4 represent the linear instability thresholds
for the n-th mode, as given by Eq.(18). The black dots indicate the borders between different
domains: domain I - the domain of the linear stability of the film; domain II - where only TW
solutions for Egs.(1),(2) of the y;-type exist; domain III - the domain of coexistence between
TW solutions of both ;- and ya-types; domain IV - where TW flows of the yo-type coexist with
NSW solutions; domain V - where TW flows of the yo-type emerge along with replicated TW
flows of the vi-type and NSW of various kinds.

in Fig.4d in [10] obtained for k¥ = 0.0084. Thus, while we have not performed a detailed analysis
of attraction domains at € = 0.002456, we conjecture that the yo-type TW obtained in [10] there
is unstable.

4.2.8. Non-stationary wave solutions The non-stationary solutions found in case B include
three types: (i) NSW corresponding to an unstable y;-type TW, € = 0.004 (k = 1.368 x 102),
indicated in Fig.3 by a bar with black squares; (ii) NSW corresponding to an unstable vyo-type
TW, € = 0.0035,0.003 and 0.002456, (k = 1.197 x 102, 1.026 x 10—2,0.840 x 10~ 2), all indicated
in Fig.3 by bars with black triangles; and (iii) NSW that switches between both the ;- and o-
waves, € = 0.0033 (k = 1.129 x 1072) and 0.0028 (k = 0.958 x 10~2), both indicated in Fig.3 by
bars with x. We note that all three types of the NSW flows portray the same power spectrum
which contains a noisy variability about the harmonic peaks which is indicative of quasiperiodic
tori. Furthermore, we recall that a decrease in € corresponds to increased nonlinearity. Thus,



the non-stationary phase plane portraits become more dense and their corresponding spectra
become more wide banded.

4.2.4. Coezisting solutions As already noted above, Egs.(1),(2) exhibit coexistence between
various types of solutions in case B, as well as in case A. However, unlike case A, where
coexistence is found only between two types of TW flows, the coexistence in case B is found also
between the y;-type TW with an NSW for ¢ = 0.004 (k = 1.368 x 10~ 2).

5. Conclusions

In this paper we have carried out a numerical investigation of the nonlinear dynamics of
thin falling films in the context of the first-order weighted-residual boundary-layer (WRIBL)
equations derived by Ruyer-Quil and Manneville [4]. These equations, augmented with periodic
boundary conditions have been shown to admit solutions of various kinds, among which one finds
traveling waves (TW) and several types of aperiodic non-stationary waves (NSW). We note that
while TW solutions were documented previously by [4, 10], the existence of NSW solutions
for Egs.(1),(2) is first determined in this paper. Furthermore, our numerical investigation of
Eqgs.(1),(2) shows that the coexistence of stable TW flows is possible in region III for both
cases A and B. This result is similar to that of Scheid et al. [10] for the time-independent
WRIBL equations (1),(2) in case B. Moreover, additional coexisting forms of TW and NSW are
also observed here for the first time in the WRIBL equations with periodic boundary conditions.
Based on the results of this investigation of Egs.(1),(2), we conjecture that several of the solution
branches found in the TW analysis[10] are unstable.

The bifurcation structures of the two different cases investigated have several common
features: (i) traveling waves of the ~y;-type bifurcate from the stability threshold of the system;
(ii) slightly before the parameter range, where the second mode becomes linearly unstable, a
coexistence between the traveling waves of ;- and 7,-types arises; (iii) traveling waves of the
~vo-type then become dominant; (iv) the ~y2-type waves then lose stability to a non-stationary
flow regime; (v) when more unstable modes become involved in the film dynamics, an increase
in complexity of the spatiotemporal film dynamics occurs.

The results of this numerical investigation lead to several open questions that cannot be
resolved by this type of analysis: (i) the coexisting v1- and ~yo-type TW or the coexisting ~o-
type TW and an NSW, are separated by at least one unstable solution. We conjecture that
the former is an outcome of a secondary subcritical pitchfork bifurcation which can explain the
steep emergence of the yo-type TW branch, at R = 6.7 (hy = 2.375) in case A and at ¢ =~ 0.004
(k = 1.368 x 10~2) in case B.
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