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Abstract. We consider experimentally transition in a liquid metal cylinder heated from below
and subject to superimposed rotating and static magnetic fields. Being itself unstable, a strong
enough rotating magnetic field driven flow suppresses considerably the temperature fluctuations
due to the thermo-gravitational convection. The superimposed static ‘cusp’ magnetic field
reduces further the amplitude and characteristic period of remaining temperature fluctuations
while a superimposed uniform axial field has no such effect. This behavior agrees quantitatively
with the differing effects of both static fields on the additional unstable Taylor vortex type
solutions, which bifurcate sub-critically and actually govern the transition in the rotating
magnetic field driven flow. Thus, the observations are consistent with the description of a
turbulent shear flow as a trajectory wound irregularly on the skeleton of the additional unstable
flow states. If this ‘skeleton’ is compressed by an external influence (the ‘cusp’ static field in our
case), then also the averaged amplitude of turbulent fluctuations decreases by the same factor.

1. Introduction

The problem under consideration stems from the crystal growth technologies where inverse
thermal gradients are often met, and the occurrence of flow oscillations is usually to be avoided.
The inherently unstable configuration of a liquid heated from below can be stabilized by
mechanical rotation [1]. This effect is traditionally used in crystal growth technologies. If the
liquid is a good electrical conductor (and semiconductor melts are) then the rotation can also
be forced magnetically by a rotating magnetic field [2]. A steady magnetic field also stabilizes a
liquid heated from below [1, 3, 4, 5]. It turns out, however, that the stabilization by an RMF is
energetically much more effective since the required field flux density is much lower compared to
a steady magnetic field [6, 7]. The stabilizing capability of a rotating magnetic field (RMF) is
limited by the hydrodynamical Taylor–Görtler instability powered by the outwards decreasing
radial profile of the angular velocity near the side wall [7]. A superimposed steady magnetic field
suppresses this instability [8]. As a result, a combination of rotating and steady magnetic fields
is able to stabilize the flow considerably more than both fields separately — the field effects
‘multiply’. The Rayleigh number may be still too large in real crystal growth applications to
fully stabilize the melt motion by the combined magnetic fields. Even so, they may be used to
damp the turbulent temperature fluctuations. It has been shown [7] that a sufficiently strong
RMF reduces the amplitude of temperature fluctuations considerably if the magnetic forcing
outweighs buoyancy. This may be regarded as an ‘embedded transition’ between a large scale,



large amplitude buoyancy and a small scale, small amplitude RMF driven flow turbulence. The
later state is largely controlled by Taylor vortex type structures represented by the additional
unstable steady solutions [8]. These solutions bifurcate sub-critically well below the first linear
instability of a different kind [9] and control actually the nonlinear transition of the RMF driven
flow in the presence of tiny imperfections [10]. This transition has much in common with the
sub-critical transition in shear flows although the mechanisms are different. Namely, a slightly
disturbed linearly stable RMF driven flow may become turbulent similarly as it is observed, for
instance, in the pipe flow. According to the description of Grossmann [11] the properties of the
irregular (or turbulent) motion under the nonlinear transition are closely related to the properties
of sub-critical coherent structures, particularly, the additional unstable steady solutions. The
motion is imagined as a trajectory wound irregularly on a skeleton of those coherent structures.
Thus, knowing the effect of some control parameter on the amplitude of the additional solutions,
one can estimate the effect of this parameter on the amplitude of the fluctuations.

The amplitude of the additional steady solutions in an RMF driven flow decreases
considerably if a static ‘cusp’ magnetic field is superimposed [8]. Thus, one may expect that a
combination of RMF and steady ‘cusp’ field will damp the flow fluctuations more efficiently than
the RMF alone. That was indeed supported by a few runs of a direct numerical simulation (DNS)
[8]. Consequences of these observations still remain rather uncertain since it is impossible to
know for sure all the additional solutions, either steady or periodic. Besides, the DNS results are
so far too fragmentary and may also be dependent on the nature of the numerical imperfections
that, in turn, may differ essentially from the natural ones.

The main purpose of our study is to widen the knowledge about the ‘embedded transition’
in the magnetically driven rotating flow heated from below, and to investigate the possibilities
of prediction of related phenomena in general. We focus our study mainly on two questions: (i)
Are the conclusions upon the additional unstable steady solutions confirmed experimentally?
(ii) What are other properties of the magnetically forced turbulent flow?

2. Problem formulation

The experiment was designed to approximate the conditions of our previous numerical study
[8]: (i) isothermal top and bottom; (ii) adiabatic side wall; (iii) low-frequency, low induction
rotating magnetic field; (iv) electrically insulating walls. The low-frequency, low induction
condition implies that the RMF experiences no skin effect and rotates much faster than the flow
it induces. The superimposed static magnetic field was either axial uniform or the so-called
‘cusp’ field in this study.

Liquid Gallium was chosen as working liquid since it is a metal with second lower melting
temperature next to Mercury and unlike the latter has much less security constrains. Gallium
was also used in previous experimental studies [6, 7, 12].

Table 1. The governing dimensionless parameters

parameter symbol definition value or range

Aspect ratio R Ro/Ho 1.0
Prandtl number Pr ν/κ 0.0285
Grashof number Gr βgT ′H4

o/ν2 [0.2:6]×106

Magnetic Taylor number Ta σωoB
2
oH4

o/2ρν2 [0.1:30]×106

Hartmann number Ha (σ/ρν)1/2BHo 105 or 0



The problem is defined by five governing parameters, see Table 1. Symbols ν, κ, β, ρ and
σ denote here the kinematic viscosity, temperature diffusivity, thermal expansion, density and
electric conductivity of liquid Gallium, respectively, with average values ν = 3.19 × 10−7 m2/s,
κ = 1.12 × 10−5 m2/s, β = 1.02 × 10−4 1/K, ρ = 6.067 × 103 kg/m3 and σ = 3.82 × 106 S/m
taken from Ref. [12]. The RMF frequency and amplitude of the flux density is denoted by ωo

and Bo, respectively. The scale of the static field is denoted by B. In case of the ‘cusp’ field,
this scale is equal to the maximum value of the axial field component at the axis of the cylinder:
B = B(−0.5r/Hoer + z/Hoez). The height of the cylinder 2Ho was equal to the diameter
2Ro = 60 mm in this study. This size allows allows to exceed the critical Grashof number of
the purely thermal case by a factor of 700 when the mean temperature gradient T ′ is at the
maximum (around 7.5 K/cm).

3. Setup and measurement technique

3.1. Cell

The container of height equal to diameter of 60 mm was made of a polished Plexiglass tube
and two copper covers (Figure 1). Each cover was made of two 12 mm thick copper discs
both of which had two 6×8 mm cross-section circular channels for heating/cooling water. The
mean diameters of the channels were 22 and 44 mm, respectively. The upper cover had a 3 mm
diameter hole through the center for filling purposes. The internal surface of covers was polished
and painted with an electrically insulating paint to avoid electrical contact with Gallium. The
outer surfaces of the cell and copper discs were covered with heat insulating material to prevent
heat loses to the environment.
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Figure 1. Scheme of container; 1 — Plexiglass cylinder; 2 — copper covers; 3 — circular
channels; 4 — water inlets; 5.1–5.4 — thermistors.

3.2. Magnetic fields

Three type of magnetic fields were used in this experiment: rotating, steady axial, and steady
’cusp’ fields. The rotating magnetic field was generated by a six coil inductor in one pole pair
connection. Maximum flux density was 2.6 mT, frequency was 30 Hz, which corresponds to a
shielding factor of K = σµoωR2

o = 0.81. The field non-uniformity in the control volume was less
than 1.2%. The steady axial magnetic field was produced by a solenoid of dimensions exceeding
the cell size in more than 10 times. The non-uniformity of the steady field was less than 1% in
the experimental volume. The axial field strength was B = 80 mT.



A system of permanent NdFeB ring magnets was used for the ‘cusp’ field. Each pole piece
was composed of four 76×42×6 mm (outer diameter, bore diameter, thickness), four 40×23×6
mm and four 20×0×5 mm magnets. Distance between the opposite poles was 120 mm. The
resulting maximum axial field flux density near the internal surface of the container cover was
B = 80 mT.

3.3. Temperature measurement

Four 0.3 mm diameter glass encapsulated miniature thermistors (YSI Corp./32A48) were
installed in 1 mm diameter holes in the container side wall with their tips aligned with the
internal surface of the container (Figure 1). Three of them were placed at the height of 20 mm
above the bottom cover with 60 degrees angular displacement along the azimuth. The fourth
thermistor was placed 20 mm below the top cover opposite to the middle of three lower sensors.

The signals from the thermistors were simultaneously registered by four Keythley K2000
multimeters. Thermistors were fed by a small DC current of 10 µA provided by the multimeter,
thus, limiting the self-heating effect of the thermistor. All four thermistors were calibrated
individually. The thermistor sensitivity changed from ≈ 50 Ohm/K at T = 303 K to ≈

10 Ohm/K at T = 333 K. The error of the temperature measurements increased with the
temperature and was between 0.001 and 0.005 K, respectively.

The cooling/heating water was supplied at a flow-rate of about 3 l/min from the baths of two
thermostats. Temperature in both thermostat baths was controlled within 0.1 K tolerance by
two temperature probes (pt1000) installed on the outer surface of the cell covers. The applied
temperature difference divides between the copper covers, their electric insulation and the
Gallium bulk. To measure the part which applies directly to the Gallium bulk we performed the
following test. A stable temperature gradient was applied by setting the temperature difference
of the thermostats to ∆T = 12 K. The temperature difference between the vertically displaced
(by 2 cm) thermistors was measured to be 3.50 K that corresponds to T ′ = 3.5/2 = 1.75 K/cm
or T ′ = 7/8∆T/2Ho. This expression of the temperature gradient was used in the Grashof
number definition (Table 1) further on.

4. Results

We considered four cases with ∆T = 12, 18, 30 and 50 K (the Grashof number 1.4, 2.1, 3.5 and
5.8 ×106, respectively). The standard deviation of the temperature variation is plotted versus
the strength of the rotating field in Figure 2. Transition under both the superimposed axial and
‘cusp’ steady fields was considered as well as the case of RMF alone for ∆T = 30 and 50K. The
amplitude of temperature fluctuations went down by a factor of 10 to 30 during the transition.
In all cases we observed a more pronounced transition for a superimposed ‘cusp’ field compared
to the axial field case, particularly for higher ∆T . The strongest suppression of fluctuations
was with the ‘cusp’ field shortly after the transition. The corresponding threshold value of the
Taylor number vs. the Grashof number is shown as inset of Figure 2. This dependency was well
approximated by a power function with an exponent of 0.8.

Figure 3 shows correlations of signals from thermistors 2 and 4 symmetrically placed on
opposite sides of the mid-plane c2 4(0) according to the definition

ci j(τ) = ci j(∆n∆t) =
N−∆n
∑

n=1

ui(tn)uj(tn + τ)
(

ū2
i ū

2
j

)1/2
, where ui(tn) = Ti(tn) − T̄i.

Symbols N and ∆t denote the total number of time layers and the time step, respectively. The
fluctuations remained vertically correlated well above the transition in case of the superimposed
steady axial field. Otherwise, the vertical correlation disappeared immediately after the
transition.
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Figure 2. The mean standard deviation of temperature fluctuations vs. the magnetic Taylor
number. Diamonds, circles, boxes and triangles display ∆T = 12, 18, 30 and 50K cases while
filled and open symbols correspond to ‘cusp’ and axial field, respectively. Crosses and asterisks
refer to the no steady field case with ∆T = 30 and 50K, respectively. The inset shows the
dependency of the transitional Taylor number vs. the Grashof number.
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Figure 3. Correlation of signals from
vertically displaced sensors vs. the magnetic
forcing. Boxes, circles and triangles refer
to the ‘cusp’, axial and no steady field
cases, respectively. Solid dashed and dotted
lines correspond to ∆T = 50 30 and 18K,
respectively.

The instantaneous azimuthal correlation, in turn, continued to increase with Ta after the
transition for all field configurations (Figure 4). The azimuthal correlation stayed comparably
low in case of the ‘cusp’ field. Pronounced minimums were observed for RMF alone or with the
steady axial field due to the temporary change from the azimuthal vawe number m = 1 to a
m = 2 mode dominated regime. The azimuthal correlation of time-shifted signals was higher.
Its maximum approached unity just before the transition at Ta = 3 × 106 for ∆T = 50 for all
field configurations and declined afterwards (Figure 4). The time delay at which the maximum
azimuthal correlation is reached can be associated with the angular velocity of thermal structures
transported by the rotating flow. This velocity

ωcor =
∆φi j

τ i j
max

, where τ i j
max is defined by ci j(τ

i j
max) = max

τ
ci j(τ),

is shown versus the forcing in Figure 5.
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Figure 4. The azimuthal correlation vs. the magnetic forcing at ∆T=50K: (a) Instantaneous
correlation, (b) correlation of time shifted signals maximized by the shift delay. Solid, dashed
and dotted lines correspond to correlations of signals from sensors displaced by π/3, 2π/3 and
4π/3 in the flow direction, respectively. The ‘cusp’, axial and no steady field cases are displayed
by boxes, circles and triangles, respectively.
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Figure 5. The dimensionless angular velocity of rotating thermal structures vs. the magnetic
forcing: (a) ∆T = 18K, (b) ∆T = 50K. Boxes, circles and triangles correspond to ‘cusp’,
axial and no steady field cases, respectively. The angular velocity is expressed as the angular
displacement of thermistors divided by the time of delay to reach the maximum correlation.
Thick solid and dashed lines display axisymmetric numerical results for the mean angular velocity
under uniform axial and ‘cusp’ static field, respectively. The dotted line displays a Ta2/3 slope.

Two typical cases of the fluctuation frequency power spectrum are shown in Figure 6.
Pronounced low frequency peaks were observed in case of a superimposed axial field shortly
after the transition. The high-frequency falloff was considerably more flat for the ‘cusp’ field.

5. Discussion and conclusions

Being itself unstable, the magnetically driven flow may considerably suppress the temperature
fluctuations in a liquid heated from below when the forcing is raised above a certain threshold.
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Figure 6. Frequency power spectrum of temperature fluctuations in the magnetic forcing
dominated regime at ∆T = 50K: (a) Ta = 5 × 106, (b) Ta = 2 × 107. Steady axial, no steady
field and ‘cusp’ field cases are placed top to bottom, respectively.

This type of flow regime change was the main subject of our study. We considered the effect of
a moderate strength superimposed static (either uniform axial or the so-called ‘cusp’) magnetic
field on this transition. The transition was well pronounced in terms of the fluctuation amplitude
under the superimposed static ‘cusp’ field. For other field configurations the fluctuation
amplitude dependency smoothed out at ∆T ≥ 30K. In terms of the time-shifted maximum
azimuthal correlation over long scales (figure 4b), however, the transition was equally observable
independently on the static fields at the highest Gr considered. Hence, we may assume that
the ‘cusp’ field just sharpens the transition diagram in terms of the fluctuation amplitude while
the transition in terms of the structure change is not much influenced by the static fields.
Taking, thus, the ‘cusp’ field as a representative case and defining the transitional magnetic
forcing as intersection δT (Tatr, Gr)/∆T=0.01 we obtained the estimate Tatr(Gr) = O(Gr4/5).
Alternatively, the ‘critical’ Grashof number was Grc = O(Ta5/4). Expressed in terms of the
core angular velocity Ω (for which the Ta2/3 scaling was observed, see figure 5) this relation
is Grc = O(Ω15/8). This exceeds considerably the threshold value in case of pure rotation
Grc = O(Ω4/3) (Chandrasekhar 1961). Seemingly, the stabilizing action of the RMF is not
restricted to the rotation it induces. A possible explanation may include the meridional flow:
To cause instability the buoyancy forces O(Gr) should reach the scale of the centrifugal forces
O(Ω2) = O(Ta4/3) driving the secondary flow in the horizontal boundary layers. Equalizing
both quantities at Tatr, one has Tatr(Gr) = O(Gr3/4) which is indistinguishable close to the
observed scaling 0.8. If this scaling holds for higher control parameter values, then it may
have an implementation for large semiconductor crystal growth techniques where the intrinsic
Grashof numbers are in the order of 109. One of the purposes of the mechanical rotation applied
in such processes is the damping of the buoyancy driven fluctuations. Extrapolating the current
results one may expect a difference between the magnetically and mechanically driven stabilizing
angular velocity to grow by a factor of O(Gr1/4).

One of the central questions of the current study concerns the amplitude of the temperature
fluctuations in the RMF governed regime. According to the existing knowledge [14, 8] the
turbulence arises from the Taylor-Görtler instability in the side layer. This instability is
somewhat hidden by its non-linear appearance. Namely, the steady axisymmetric Taylor vortex
type solutions remain disconnected from the basic state well above the first linear instability
of a different type [9]. Our previous numerical study [8] showed that the amplitude of the



axisymmetric Taylor vortex steady additional solutions decreases by a factor of four when a static
‘cusp’ field with Ha = 100 is superimposed. Thus, one may expect a decrease of the amplitude
of the temperature fluctuations according to the description of the excited state by Grossmann
[11]. Such a decrease was indeed observed in our experiment in a regime shortly after the
transition. The effect was particularly expressed at lower thermal gradients when a factor of four
was observed in a perfect agreement with the predictions upon the amplitude of the additional
solutions. Two consequences follow from these observations: (i) The application of combined
RMF and static ‘cusp’ fields may be practically beneficial if the amplitude of the temperature
fluctuations matters. (ii) Certain turbulence properties may be predicted from a numerical study
of the additional flow solutions. Besides the fluctuation amplitude, the different static magnetic
fields also act differently on other turbulence properties. In case of the superimposed static ‘cusp’
field the frequency spectra has a comparably flat falloff at high frequencies that means a larger
share of small scale fluctuations. Consequently, both the amplitude and the characteristic scale
of the turbulence near the side wall decreases in the ‘cusp’ field. The uniform axial field, in turn,
may cause distinct frequency peaks just after the transition (figure 6). Different was also the
effect of various field combinations on the correlation of signals from vertically displaced sensors.
In case of the uniform static field, the vertical correlation persisted well above the transition and
declined at Ta = 107 independently on the thermal gradient. The vertical correlation is due to
large scale thermal waves, which dominate the unsteady flow below the transition. The thermal
waves seem to be gradually replaced by steady field aligned structures after the transition. These
structures break up as the forcing is further increased. No signs of such vertical structures were
observed under the influence of the ‘cusp’ field. Unlike the vertical correlation the azimuthal
one increases with the RMF strength for Ta > Tatr under either combination of magnetic fields
considered. This effect suggests the formation of a ‘quasi-axisymmetric’ turbulence, a regime
dominated by circumferentially elongated structures near the side wall.
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