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Abstract. We study experimentally and numerically the dispersion of a passive molecular dye

in a hexagonal pattern of Bénard-Marangoni (BM) convection (Prandtl number ≈ 900). Indeed,
it is not straightforward to estimate the effective (global) diffusion coefficient in such BM

convection pattern, where the fluid flow is three-dimensional and periodical from cell to cell.
The computations have been undertaken for two Peclet numbers (Pe ≈ 100-1000) and constant

fluid flow characteristics. One can distinguish two mechanisms of dispersion: inside a cell and
from cell to cell. In the latter, only diffusion acts across the cell side in the horizontal direction,

i.e. between symmetric facing streamlines with respect to the cell side. On the other hand, the

dispersion inside a cell behaves streamwise depending on either the convective and diffusive
fluxes add each other (low concentration gradient) or they oppose each other (high

concentration gradient), while in the transversal direction by molecular diffusion.

1.  Introduction
The diffusion of a passive matter in a convective flow has drawn a lot of interest from industrial

applications (such as processes which require uniform mixing or impurity distributions) [1,2], plasmas

[3,4], to environmental problems (spreading of pollutants) and astrophysics [5,6]. Indeed in all these

problems, the passive tracer dispersion results from the combination of the molecular diffusion and the

fluid flow convection, which can be quite complicated (turbulent, laminar but cellular or recirculating

flows, etc.). Therefore, in such configurations one often observes an enhancement of the effective

diffusion of impurities. The dispersion of a passive molecular dye in a convecting liquid has two

physical origins: firstly the molecular diffusion from streamline to streamline, secondly, the transport

of the tracer in the flow.

In recirculating flows such as Rayleigh-Bénard rolls, when advection is much greater than diffusion

(high Peclet number), both mechanisms add each other to strongly enhance the tracer transfer. This

phenomenon has been extensively studied theoretically [7-12] and experimentally [13,14]. On the



other hand there are some other convective cases in which regions of the fluid flow where advection

and diffusion act in opposite directions such as Bénard-Marangoni (BM) convection. This

phenomenon appears in a thin horizontal liquid layer uniformly heated from below and cooled

throughout its free upper surface. Close to the threshold, the convective flow is characterized by a

tessellation of hexagonal convective cells where the flow is upwards along the cell axis and

downwards along the cell edges. Inside each cell every streamline is closed and is set over a vertical

surface as it is well known. At the pattern level the dispersion of a passive molecular dye is not

straightforward to estimate because the fluid flow is three-dimensional, and furthermore despite it is

periodical from cell to cell the diffusion and advection act in various directions according to the

considered point. To our knowledge, only two works have been devoted to the anomalous diffusion in

Bénard-Marangoni convection, experimentally [15] and theoretically [16].

So the present work aims to complement the scarce previous results and broaden the understanding

of dye dispersion in a hexagonal pattern of Bénard-Marangoni convection.

2.  Governing equations and numerical model
The modeling of the passive scalar dispersion in Bénard-Marangoni convection can be obtained in two

stages: first set-up the base fluid-flow; second keep frozen the obtained fluid flow and start the passive

dispersion process. The base flow is governed by the incompressible Navier-Stokes equations coupled

with the energy conservation equation and the passive dye dispersion obeys a standard advection-

diffusion equation.

2.1.  The base Bénard-Marangoni fluid flow

Introducing dimensionless variables of space, time, velocity and temperature into the conservation

equations of mass, momentum and energy result in the following set:

       ∇∇.u = 0 (1)

    1
P r

∂u
∂t

+ u.∇∇ u = -∇p + ∇2u + Ra θ ez (2)

    ∂θ
∂t

+ u.∇∇ θ = ∇2θ (3)

supplemented with appropriate initial and boundary conditions. The fluid flow boundary
conditions are:

  u = 0 (4)

at all solid walls and the Marangoni condition at the free surface:
    

u.n = 0 ;
∂u
∂z

= - Ma
∂θ
∂x

;
∂v
∂z

= - Ma
∂θ
∂y

. (5)

The associated heat transfer boundary conditions reduce to
θ  = 1 (6)

at the heated horizontal bottom wall,
   ∂θ

∂n
= 0 (7)

at all lateral walls, and finally at the free surface



   ∂θ
∂n

= - Bi θ (8)

The related physical parameters have been gathered into four non-dimensional numbers, namely

the Biot number 
  

Bi =
dl

kl

ka

da
, the Marangoni number 

   
Ma =

γ dl ∆T

µ κ , the Rayleigh number

   
Ra =

β g dl
3 ∆T

ν κ  and the Prandtl number 
   

Pr =
ν
κ .

2.2.  The dispersion of a passive molecular dye

The time evolution of the passive dispersion dye obeys the standard advection-diffusion equation:
    ∂C

∂t
+ u.∇∇ C = Pe ∇2C (9)

where C designates the passive dye concentration in the convective fluid flow and Pe stands for the

Peclet number. This conservation equation is supplemented with the boundary condition (constant

concentration at center of the vessel)

C(x2+y2<0.1, 0 ≤ z ≤ 1, t > 0) = 1 (10)

and a non absorbing (zero flux) condition along the solid walls and free surface
   ∂C

∂n
= 0 (11)

In the present Bénard-Marangoni convection problems the Peclet Number is defined as
   

Pe =
γ dl ∆T

ρ κ κC

, (where ΚC is the passive dye diffusivity into the liquid).

2.3.  Numerical model

A finite element model has been developed to numerically solve the governing equations (1-11) on

computational domains of arbitrary shape and numerous validations have been performed for the

Bénard-Marangoni convection class of flows [17]. In the present work, a steady state hexagonal

convection pattern is first computed and then one computes the transient passive dye dispersion in the

liquid layer assuming the fluid flow to be insensitive to the dye.

3.  Results

3.1.  Experiments

The experimental set-up is essentially made up of a cylindrical container (8 cm diameter) surrounded

by Perspex lateral wall. The vessel bottom is horizontal and made of copper. It is supplemented with a

regular hexagonal array of small copper cones to maintain a steady convective hexagonal pattern. The

wave number of the array is that of the naturally selected pattern just above the threshold. The1 mm

depth silicon oil layer (Pr ≈ 900 at 20°C) is uniformly heated from below and cooled from above

thanks to a thermally regulated water flow.

In the experimental process, one first establishes a steady convective hexagonal pattern for

Ma ≈ 1.1Mac (critical Marangoni number). Then the dye is injected into the centre of a cell located in

the middle of the pattern and dispersion takes place.



A temporal sequence of snapshots is presented in figure 1 in the vicinity of this central cell. Owing

to the symmetry of the hexagonal pattern, only one quarter of the plane is displayed. It is noteworthy

that the dispersion first takes place along the apothems (the lines joining adjacent cell centers) of the

first neighboring cells defining a wedge centered at the cell center (figure 1a). Then the dye spreads

out towards the corners of this cell (figure 1b-1e). In figure 1f the dye progressively invades the

second neighboring cell. In figures 1g-1i the contamination of the second neighbors goes on and that

of the third neighbors begins. On can notice that the dye never goes through the cell axis but

circumvents it by both sides.
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Figure 1. Time evolution of the dye diffusion in a regular hexagonal Bénard-Marangoni convection

(the black dots located at the centre of the cells are the metallic cones).

3.2.  Computations and discussion

Owing to the problem symmetries the computational domain represents only one quarter of the

actual experimental container. The steady hexagonal Bénard-Marangoni convective pattern is

computed for Ma = 85, Ra = 0, Bi = 0.1 and Pr = 900. Then the time evolution of the dye dispersion is

computed with the obtained steady velocity field for Pe = 1000. Some computed results are depicted

in figure 2, both from an isometric view centered on the dye injection (left) and top view of the liquid

layer (right). The velocity field (figure 2a) and dye concentration one are presented at t=25s

(figure 2b), t=50s (figure 2c), t=75s (figure 2d), respectively.
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Figure 2. Isometric and top views of the velocity and dye concentration fields in BM convection.



From the isometric views of the dye concentration field at different instants (figure 2b-d) one can

distinguish basically two mechanisms of dispersion: inside a cell and from cell to cell. In the latter,

only diffusion acts across the cell side in the horizontal direction, i.e. between symmetric facing

streamlines with respect to the cell side. On the other hand, the dispersion inside a cell behaves very

differently whether the convective and diffusive fluxes add each other (low concentration gradient) or

they oppose each other (high concentration gradient). So dispersion inside a convective cell is highly

location dependent: convective dominated in streamwise direction or molecular diffusion dominated

otherwise (transversal directions with respect to the cellular fluid flow or in counter flow locations).

4.  Conclusion
The dispersion of dye in Bénard-Marangoni convection has been experimentally and numerically

investigated. A fair agreement can be observed between these two kinds of results. The numerical

model enables us to get a more detailed insight of the mechanism compared to the experiments which

provides global results across the liquid thickness. The present study has confirmed that the boundary

tubes around the axis of the hexagonal cells are regions of great diffusive resistance whereas the

regions where the fluid flow acts in the same direction as the diffusion are of high global transfer. So it

is undoubtedly a quite different dispersion mechanism as compared as in Rayleigh-Bénard

configurations where convection plays the dominant role. In a forthcoming work we will be able to

determine the effective diffusion coefficient and the influence of several physical parameters.
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