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Abstract. The flow in a shallow layer of an electrically conducting fluid past a localized
magnetic field is analyzed numerically. The field occupies only a small fraction of the total flow
domain and resemblances the magnetic field created by a permanent magnet located close to
the fluid layer. Two different physical cases are considered. In the first one, the fluid layer is
free from externally injected electric currents, therefore, only induced currents are present. In
the second case, an external electric current is injected to the fluid layer, transversally to the
main flow direction. It is shown that the Lorentz force created by the interaction of the electric
currents with the non-uniform magnetic field acts as an obstacle for the flow and creates different
flow patterns similar to those observed in the flow past bluff bodies. A quasi-two-dimensional
model that takes into account the existence of the bottom wall through a linear Hartmann-
Rayleigh friction term is considered. When inertial and magnetic forces are strong enough,
the wake formed behind the zone of high magnetic field is destabilized and a periodic vortex
shedding similar to the classical von Kármán street is found. The effect of Hartmann-Rayleigh
friction in the emergence of the instability is analyzed.

1. Introduction
There is a practical interest to investigate magnetohydrodynamic (MHD) flows that may become
unstable and present a time-dependent behavior. In fact, promotion of unsteady inertial flows,
in particular time-dependent mixing, is desirable for heat transfer enhancement purposes. In
spite of some stabilizing effects of steady magnetic fields, there are several MHD flows at low
magnetic Reylods number that may present unstable behavior. For instance, high velocity side
layer flows in rectangular ducts [1, 2], flows past solid obstacles [3, 4], flows in ducts with non-
uniform wall conductance [5, 6], electrically driven flows [7, 8], and flows in localized magnetic
fields [9, 10, 11, 12], provide examples of the appearance of instabilities in flows of conducting
liquids under steady magnetic fields.

In general, an external magnetic field affects the stability of a base flow of an electrically
conducting fluid in two opposite ways. In the one hand, there is an stabilizing effect produced
by two mechanisms: the damping of velocity fluctuations by Joule dissipation and the braking
of the flow by the Hartmann effect. The damping of fluctuations manifests the dissipative action
of electric currents circulating in the fluid, since kinetic energy is converted into heat via Joule



dissipation. In MHD flows, Joule dissipation leads to a more rapid damping of disturbances
than in flows where only viscous dissipation prevails. Besides, the circulation of electric currents
in boundary layers attached to walls where a normal component of the applied magnetic field
exists, creates a Lorentz force that tends to brake the fluid motion (i.e the Hartmann braking).
Since velocity gradients are increased near the wall, wall friction is also increased, leading to a
rise in the drag coefficient. As a matter of fact, the possibility of flow stabilization through the
action of a steady magnetic field, is the basis of many technological applications [13].

On the other hand, Lorentz forces may also produce a destabilizing effect on the flow by
modifying the mean-flow velocity distribution. In fact, the creation of inflection points in
the velocity profile is the mechanism by which Lorentz forces may reduce the stability of the
flow. There are several examples that show the emergence of instabilities when non-uniformities
in the electromagnetic conditions of the flow are present. Non-uniformities, for instance, in
the electrical conductivity of the walls or in the strength of the magnetic field, promote the
creation of internal shear layers. However, the presence of non-negligible intertial effects is
a necessary condition for these layers to become unstable. This is shown very clearly in the
paper by Bühler [6] where the quasi-two-dimensional flow in a duct with a discontinuity in the
electrical conductivity of the walls under a uniform magnetic field, was theoretically analyzed.
He showed that inhomogeneity in the wall conductivity may develop an instability that leads to
time-dependent solutions similar to the Kármán vortex street behind bluff bodies. In fact,
the formation of a Kármán street was also observed experimentally in the shallow flow of
mercury in an insulating open channel in which a copper disk much thinner than the fluid
depth was mounted on the bottom [5]. Non-uniform magnetic fields may also be the source
of flow instabilities. Arranges of permanent magnets have long been used to promote mixing
and even to get quasi-two-dimensional turbulent regimes by injecting electric currents in thin
fluid layers [7, 8]. A less studied stuation involves the creation of internal shear layers by
traveling localized magnetic fields in quiescent fluids or, equivalently, uniform flows past fixed
localized fields. As a matter of fact, flows of this kind exhibit some features similar to those of
ordinary flows around solid obstacles. It has been shown experimentally that vortical flows can
be generated by the interaction of the field produced by a traveling permanent magnet, with
an electric current applied through a thin layer of an electrolyte [9, 10, 11]. Depending on the
velocity of the magnet and the injected electric current, different flow patterns can be generated,
including a wavy wake, symmetric vortex pairs and even periodic vortex shedding. Recently, the
interaction of a uniform flow with a localized magnetic field, denominated a magnetic obstacle,
was analyzed numerically considering that inertial effects dominate over Hartmann-Rayleigh
friction in the bounday layers attached to the bottom wall [12]. Unlike experimental studies,
no injected electric currents were considered and Lorentz forces were created instead by the
interaction of induced electric currents with a localized field. It was shown that this field acts as
an obstacle for the flow and, under certain conditions, an instability leading to vortex shedding
can appear. In the present contribution, we extend the previous study by assessing numerically
the effect of Hartmann-Rayleigh friction in the emergence of the instability, in a thin layer of
conducting fluid. Further, preliminary simulations of flows induced by injected currents are also
considered.

2. Formulation
Let us consider the flow of a thin layer of an electrically conducting incompressible viscous fluid
under the influence of a non-uniform magnetic field, produced by a localized source. At the
bottom, the fluid is bounded by an electrically insulated rigid wall, and at the top, by a free
surface. Lateral boundaries are assumed to be far enough from the magnetic source, so that
their influence on the flow in the neighborhood of the source is negligible. The magnetic field is
produced by a square magnetized surface uniformly polarized in the normal direction, embedded



on the bottom wall. Since its magnetic dipole moment points in the direction normal to the
plane of flow (positive z-direction), the dominant contribution of the applied field comes from
the normal component and is the only one considered. If we place the coordinate system in the
centre of a rectangular surface with side lengths X0 = 2a and Y0 = 2b, the normal component
of the field produced by a single magnetized surface laying on the plane Z = −h is given in
dimensional terms by [14]

B0
z = γBmax

{
tan−1

(
(X + a)(Y + b)

(Z − Z0)[(X + a)2 + (Y + b)2 + (Z − Z0)2]1/2

)

+tan−1
(

(X − a)(Y − b)
(Z − Z0)[(X − a)2 + (Y − b)2 + (Z + h)2]1/2

)

− tan−1
(

(X + a)(Y − b)
(Z − Z0)[(X + a)2 + (Y − b)2 + (Z + h)2]1/2

)

− tan−1
(

(X − a)(Y + b)
(Z − Z0)[(X − a)2 + (Y + b)2 + (Z + h)2]1/2

)}
, (1)

where B0
z stands for the dimensional applied magnetic field and γ is a normalization constant.

For the sake of simplicity, we consider that the magnetized surface has a square shape, that is,
2a = 2b = L, where L is taken as the characteristic length of the flow. It is assumed that the
size of the magnetized surface is small compared to the whole flow region; consequently, the
non-uniform magnetic field affects only a small localized zone. Since the surface is embedded on
the bottom wall, h corresponds to the thickness of the fluid layer. We assume that the applied
magnetic field is an independent function of the z-coordinate. Actually, the variation of the
applied field in the normal direction is slight since the thickness of the layer is small compared
to the length of the flow domain in the x− and y−directions.

Far from the magnetic source, the fluid displays a uniform flow of magnitude U in the positive
x-direction. The motion of the fluid within the applied field induces electric currents which
generate an induced field b, so that the total magnetic field is given by B = B0 +b. We assume
that the induced field is much smaller than the applied field, b << B0, which means that the
magnetic Reynolds number, Rm = µσUL, is much less than unity. Here, µ and σ, are the
magnetic permeability and the electrical conductivity of the fluid, respectively. We consider
two different physical situations. In the first one, the fluid layer is free from externally injected
electric currents, therefore, only induced currents are present. The induced currents interact
with B giving rise to a non-uniform Lorentz force that opposes the oncoming flow and creates
vorticity. In the second situation, we consider that, besides induced currents, an external electric
current is injected to the fluid layer, transversally to the main flow direction. In fact, the current
is injected in the negative y-direction so that the created Lorentz force, as well as the induced
Lorentz force, opposes the oncoming flow. Evidently, in this case, the superposition of forces
lead to stronger opposing force.

It is important to note that the generation of vorticity by Lorentz forces and the stability of
the flow are strongly influenced by the uniformity or non-nuniformity of the applied magnetic
field. The generation of vorticity can be analyzed by looking at the curl of the Lorentz force,
namely,∇×(j×B0) = (B0·∇)j+(j·∇)B0, where j denotes the induced electric current density. In
flows under uniform fields, induced currents form cross-sectional loops (in planes parallel to the
applied field) that close through Hartmann layers. In this case, the vorticity is generated by the
term (B0 ·∇)j. Further, Hartmann braking generated due to currents closing through Hartmann
layers tend to stabilize the flow. On the other hand, under non-unifrom fields, electric currents
form loops in both planes parallel and perpendicular to B0 and the term (j · ∇)B0 strongly
contributes to the vorticity generation. In fact, current loops in planes perpendicular to B0 can



modify dramatically the velocity distribution and affect the flow stability.
In the next Section, we consider flows in the absence of injected electric currents, and analyze

the effect of bottom friction in the stability of the flow. In Section 4, injected electric currents
are considered.

3. Flow in the absence of injected electric currents
Since a significant geometrical confinement is imposed by the small thickness of the fluid layer,
we consider that the flow is quasi-two-dimensional. With a quasi-two-dimensional approach, the
problem is usually formulated in terms of core variables, but the effect of the boundary layers
is still included through an additional term on the momentum equation accounting for the wall
friction. In this way, we reduce the computational effort of solving a three-dimensional problem
to a two-dimensional flow formulation for the core variables. In order to do that, we integrate
(average) the equations in the normal direction. This has been done in the past in flows under
uniform magnetic fields [6, 15] as well as under a non-uniform field [16]. Recently, this approach
was used for analyzing flows under localized magnetic fields [12].

Following the quasi-two-dimensional approach, we assume that the transport of momentum
in the normal direction is mainly diffusive so that the velocity components can be expressed in
the form

u(x, y, z, t) = u(x, y, t)f(x, y, z), v(x, y, z, t) = v(x, y, t)f(x, y, z), (2)

where u and v are the velocity components in the x and y directions, respectively, averaged in
the normal direction (core variables), and the function f considers the variation of the velocity
profile in this direction. Its dependence on x and y coordinates must reflect the different flow
regions due to the localization of the magnetic field. The function f must satisfy non-slip
conditions at the bottom wall, and stress free condition at the free surface. In addition, f must
also satisfy the normalization condition, namely,

∫ α
0 Ufdz = α, where α = h/L is the aspect

ratio or the dimensionless layer thickness. In dimensionless terms, we assume that the function
f is given by

f =
αHa

αHa− tanh(αHa)

[
(1− eHaz) + eαHa sinh(Haz)

cosh(αHa)

]
(3)

where Ha(x, y) = HaB0
z is the local Hartmann number. The parameter Ha is the ordinary

Hartmann number, defined as Ha = BmaxL
√

σ/ρν, where ρ and ν are the mass density and
the kinematic viscosity of the fluid, respectively. In turn, B0

z is the dimensionless expression of
the applied field (1), normalized by Bmax. Coordinates x, y, and z are normalized by L. The
expression (3), reproduces the ordinary Hartmann flow profile in the region where the magnetic
field is intense and becomes a parabolic profile in regions where the magnetic field is negligible.

We use the assumption (2) and Eq. (3) for averaging the governing MHD equations [12], by
integrating in the normal direction from the bottom wall to the free surface. The dimensionless
averaged equations of motion in the absence of injected electric currents take the form

∂u

∂x
+

∂v

∂y
= 0, (4)

∂u

∂t
+

(
u

∂u

∂x
+ v

∂u

∂y
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K = −∂P

∂x
+

1
Re
∇2
⊥u− u

τ
+
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Re
jyB

0
z , (5)
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+

1
Re
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τ
− Ha2

Re
jxB0

z , (6)



where the overline in the velocity components has been dropped and the subindex ⊥ denotes
the projection of the ∇ operator on the (x− y)-plane. In addition, the velocity u, the pressure
p, and the electric current density j, are normalized by U , ρU2, and σUBmax, respectively, while
the time t is normalized by L/U . The parameter Re = UL/ν is the Reynolds number. The
factor K stands for the integral 1

α

∫ α
0 f2dz, which explicitly becomes

K =
αHa

2

[
αHa

(
2 + 1

cosh2(αHa)

)
− 3 tanh(αHa)

]

(tanh(αHa)− αHa)2
. (7)

Figure 1(a) shows K as a function of the axial coordinate for different Hartmann numbers,
assuming that the center of the magnetized plate is located at x = 0, y = 0. Note that it
deviates slightly from unity, so that this factor does not alter substantially the convective terms.
The third term in equations (5) and (6) represents the Hartmann-Rayleigh friction [12] due to
the existence of boundary layers attached to the bottom wall. This term models the magnetic
(Hartmann) friction in the zone of high magnetic field strength or the viscous (Rayleigh) friction
in zones where the magnetic field is negligible. It involves a characteristic timescale, τ , for the
decay of vorticity due to dissipation in the Hartmann and viscous layers. The inverse of this
timescale is given by

τ−1 =
1

αRe

∂f

∂z
|α0 =

Ha2

Re

tanh(αHa)
αHa− tanh(αHa)

. (8)

In fact, τ is the ratio of a typical eddy turnover time and a typical time scale for the Hartmann
braking [12]. It can be shown that in the limit Ha → 0 (which occurs outside the region of
strong magnetic field) this coefficient becomes the inverse of a viscous diffusion time. In figure
1(b), τ−1 is shown as a function of the x-coordinate for different Hartmann numbers. It can be
observed that the friction is maximum at the origin where the magnetic field strength is also
maximum, and decays to a constant (viscous) value as the distance from the origin grows. Also,
τ−1 grows in the obstacle region as the Hartmann number grows, and decreases as α decreases.
This means that the friction is increased the stronger the magnetic field and the thinner the
layer thickness.
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Figure 1. (a) Function K versus axial coordinate for different Hartmann numbers. (b) Inverse
of characteistic time scale versus the axial coordinate. α = 1

In order to close the system of equations (4)-(8), we have to consider the induction equation
in the quasi-static approximation. It reduces to a single equation for the component bz:

∇2
⊥bz − u

∂B0
z

∂x
− v

∂B0
z

∂y
= 0. (9)



The current density components are calculated from Ampère’s law in the form

jx =
∂bz

∂y
, jy = −∂bz

∂x
. (10)

3.1. Numerical implementation
We look for numerical solutions using a formulation based on the primitive variables, the velocity
and pressure, and the induced magnetic field as electromagnetic variable. A finite difference
method on an orthogonal equidistant grid was used to solve the governing Eqs. (4)–(9) under
suitable boundary conditions, assuming a motionless fluid as initial condition. The standard
time-marching procedure described in [17] was extended to consider MHD flows. The numerical
method is discussed in more detail in [12].

The numerical solution was obtained in a rectangular domain with a length of 35 units
(measured in terms of the characteristic length L) in the streamwise direction and 20 units
(H = 20) in the cross-stream direction. For numerical purposes, the origin was located at the
bottom-left corner of the rectangular domain. It was determined that placing the center of the
magnetic obstacle (i.e. the point of maximum magnetic field strength) at x = 10, y = 10, the
inlet effects as well as upstream effects from the outlet could be minimized. The separation, H,
between the lateral boundaries determines the solid blockage of the confined flow characterized
by the blockage parameter, β = 1/H, that in this case was fixed at 5%. A distribution of 6 and
10 nodes over one unit length in the streamwise and cross-stream directions, respectively, was
used with a 231× 211 grid.

Boundary conditions were implemented as follows. A uniform flow in the x-direction was
prescribed at the inlet, namely,

u = 1, v = 0. (11)

At the outlet, Neumann conditions were used:

∂u

∂x
=

∂v

∂x
= 0. (12)

At the lateral boundaries, symmetry-type conditions simulating a frictionless wall were imposed,
namely,

∂u

∂y
= v = 0. (13)

Finally, we assume that the induced field is zero at a long enough finite distance from the
source of the applied field. Therefore, we impose that the single component of the induced field
satisfies the condition

bz |S= 0, (14)

where the subindex S denotes all the boundaries of the integration domain.

3.2. Results
In a previous paper [12], different flow regimes in the flow past a magnetic obstacle under
conditions where inertial effects dominate over Hartmann-Rayleigh friction, were described. For
the explored Reynolds numbers (100 and 200), three different flow regimes were found according
to the value of the Hartmann number, namely, steady, transition and periodic vortex shedding.
Here, we analyze the effect of the Hartmann-Rayleigh friction on the emergence of the instability.
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Figure 2. Vorticity as a function of time on the centerline at a distance of 15 units down
stream the center of the magnetic obstacle for Re = 200 and different Hartmann numbers.
The corresponding velocity field in the neighborhood of the magnetic obstacle is shown at the
right-hand-side. Hartmann-Rayleigh friction is non-negligible. α = 1.

The Reynolds numbers explored are 50, 100, 150 and 200, while the Hartmann number varied
in the range 1 ≤ Ha ≤ 100.

In general, numerical results show that the flow past a localized magnetic field presents many
similarities with the flow around bluff bodies, displaying steady as well as time-periodic vortical
flow regimes. Flow regimes are determined by the interplay of inertial, magnetic, and viscous
forces, as well as the Hartmann-Rayleigh friction. Figure 2 shows the typical flow behavior for
Re = 200 and different Hartmann numbers, under conditions where Hartmann-Rayleigh friction
is non-negligible. In the left-hand-side, the vorticity in the mid axial line at a distance of 5
units behind the point where the magnetic field is maximum, is shown as a function of time for
different Hartmann numbers. The velocity field in the near wake for the corresponding Hartmann
number, is shown in the right-hand-side. For Ha = 36, that corresponds to a steady flow regime,
the opposition to the oncoming flow in the high magnetic field zone, produces a flow around the
magnetic obstacle. Shear layers parallel to the main flow direction are intensified in the lateral
fringing zones and a low velocity (quasi-stagnant) region with two tenuous elongated vortices,
is formed inside the obstacle and in the near wake behind it. The case Ha = 38 corresponds to
a transition regime, where time periodic oscillations are observed at the end of a long transient



state. Sustainable self-excited wake oscillations are the signature of the onset of the instability
that leads to the establishment of a vortex shedding process, similar to the classical von Kármán
street. A fully established vortex shedding regime is observed when Ha = 50, which is reached
after a very short transient time.
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Figure 3. Axial velocity component u as a function of the transversal y-coordinate for different
streamwise positions. Re = 200, Ha = 38 and α = 1.

Figure 3 shows the axial velocity component as a function of the transversal y-coordinate,
for different axial positions, when Re = 200, Ha = 38 and α = 1. This profile clearly shows
that the velocity deficit caused by the magnetic force in the localized field zone, increases with
the streamwise distance, becomes maximum (x = 13), and then decreases (x = 18). Points
of inflection in the profile are also observed, being more pronounced at an intermediate axial
location (x = 13), two units downstream of the point of maximum magnetic field strength.
Note that at this position, the axial velocity takes negative values, indicating the presence
of recirculations. In fact, the velocity deficit across the shear layers is precisely the driving
mechanism for instabilities [6, 12].

A meaningful global parameter for the characterization of flows past bluff bodies is the velocity
deficit [18]. This parameter is also very helpful for the analysis of the flows under consideration.
It is defined as

R =
Um − Ua

Um + Ua
, (15)

where Um is the velocity along the midline in the flow direction, and Ua, is the imposed inlet
velocity. In the present case, Ua = 1. When R = 0, the flow is uniform; in turn, if R = −1,
the velocity in the wake in the mid axial line is zero; on the other hand, the condition R < −1,
means that the fluid in the midline moves in the opposite direction to the main oncoming flow,
in other words, reveals the presence of recirculations. It is expected that along the wake, R will
first decrease taking negative values, reach a minimum, and then increase to become zero at a
sufficiently long distance downstream of the localized magnetic field.

In figure 4(a), the velocity deficit R is shown as a function of the axial coordinate for
different Hartmann numbers and Re = 200, α = 1. It is observed that the velocity deficit
increases abruptly (i.e. R takes increasing negative values) as the flow encounters the localized
magnetic field; depending on Ha, it reaches a maximum two or three units downstream of the
point of maximum magnetic field strength, and decreases as the distance from the magnetic
obstacle grows. Note that except for Ha = 30, all the other cases present recirculation, and the
maximum velocity deficit is found approximately at the same axial position. However, unlike
cases for Ha = 30, 35 and 37 that show a smooth behavior, the curve for Ha = 38 displays



oscillations that denote the emergence of the flow instability. In figure 4(b), the maximum value
of the velocity deficit is plotted versus Ha for different Reynolds numbers. In this figure, a
comparison is made between cases where the Hartmann-Rayleigh friction is negligible and those
in which is not. It can be observed that for Ha < 30, Rmax increases notoriously the higher the
Hartmann number. However, for Ha > 30 the variation of Rmax with the Hartmann number
is less pronounced. In turn, the effect of Hartmann-Rayleigh friction is clearly noticed since
values of Rmax are higher (i.e. less negative) when this friction is negligible. This means that
Hartmann-Rayleigh friction inhibits the flow recirculation downstream of the magnetic obstacle
and smooth the shear layers.
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The critical conditions that trigger the flow instability, depend on the strength of inertial,
viscous and magnetic forces, as well as on the Hartmann-Rayleigh friction. In figure 5(a),
the critical Hartmann number is shown as a function of the Reynolds number. The solid
line corresponds to conditions in which Hartmann-Rayleigh friction is absent, while dotted
line accounts for cases where this friction is non-negligible. For practical purposes, Hacrit

was detected by fixing the Reynolds number and varying slightly the Hartmann number until
sustained time-oscillations of the vorticity in the wake behind the obstacle are found. In the
absence of friction, Hacrit is essentially the same (≈ 25) for Re = 50 and 100. When Re increases
to 150 and 200, Hacrit increases to 26 and 28, respectively. This shows that increasing inertia, a
stronger magnetic force is needed to destabilize the flow. For the case when Hartmann-Rayleigh
friction is not neglected, the flow does not show unstable behavior for Re = 50 and 100, within
the explored range of Hartmann numbers. Sustainable time-oscillations are observed only for
Re = 150 and 200 and Hacrit raises to 38.5 and 38, respectively. As expected, the influence of
the Hartmann-Rayleigh friction delays the appearance of instabilities. This means that under
the influence of friction, for the same Reynolds number, higher Hartmann numbers are required
for destabilizing the flow, compared to cases where the friction is negligible. The interaction
parameter is also a useful dimensionless number for the characterization of critical conditions.
It is defined as N = σB2

maxL/ρU = Ha2/Re, and estimates the magnitude of magnetic forces
compared with inertial forces. In figure 5(b), the critical interaction parameter is shown as a
function of the Reynolds number. It is observed that Ncrit decreases as the Reynolds number
grows. Under the influence of friction, for the cases where the instability is not inhibited
(Re = 150 and 200), Ncrit takes higher values than those found when the friction is absent.
Previous results show that Hartmann-Rayleigh friction acts as an stabilizing factor and, under
certain conditions, may inhibit the emergence of flow instabilities.
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The vortex shedding in the wake behind the magnetic obstacle, is characterized through the
Strouhal number, defined as,

St =
fL

U
, (16)

where f is the shedding frequency. The Strouhal number was determined from the fluctuating
values of the vorticity in the wake behind the obstacle. In figure 6, the Strouhal number as
a function of the Hartmann number is shown for Re = 150 and 200 both with and without
Hartmann-Rayleigh friction. The Strouhal number exhibits a weak dependence on Ha, similarly
to the behaviour observed in other MHD flows where vortex shedding phenomenon appears [3, 6].
For cases with negligible friction, St rises up to a maximum value and thereafter presents a slight
decrease with Ha. The maximum values reached by St are 0.107 and 0.111 for Re = 150 and
200, respectively. In turn, under the influence of Hartmann-Rayleigh friction, the maximum
values reached by St for the same Reynolds numbers are 0.082 and 0.093; from these values, a
slight decrease with Ha is also observed. Cleraly, the effect of Hartmann-Rayleigh friction is to



reduce the Strouhal number as a result of the additional damping mechanism.
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Figure 7. Vorticity as a function of time on the centerline at a distance of 5 units downstream
of the center of the magnetic obstacle for Ha = 0.9 and α = 0.167. The corresponding velocity
field in the neighborhood of the magnetic obstacle is shown at the right-hand-side. (a) Re = 700,
I = 605; (b) Re = 1000, I = 1135.

4. Flows under the influence of injected electric currents
Let us now consider the flow past a localized magnetic field when an external electric current is
injected to the thin fluid layer in the negative y-direction. Under these conditions, the governing
equations are modified to take into account the additional force created by the interaction of the
injected current with the localized field. In dimensionless terms, the governing equations take
the form:

∂u

∂x
+

∂v

∂y
= 0, (17)

∂u

∂t
+

(
u

∂u

∂x
+ v

∂u

∂y

)
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∂x
+

1
Re
∇2
⊥u− u

τ
+

Ha2

Re
I(jyB

0
z −B0

z ), (18)
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1
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⊥v − v
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− Ha2
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∇2
⊥bz − u

∂B0
z

∂x
− v

∂B0
z

∂y
= 0, (20)

∂bz

∂y
= I jx, −∂bz

∂x
= I jy, (21)



where the induced and injected electric current densities have been normalized by the magnitude
of the injected current density J0. The normalization of all the other variables remains the
same as in Section 3. In addition to the Hartmann and Reynolds numbers, we have a new
dimensionless parameter, I = J0/σUBmax which is the ratio of injected to induced electric
currents. The parameters K and τ−1 have the same form as equations (7)-(8) but the local
Hartmann number is given by Ha(x, y) = HaB0

z

√
I.

The system of equations (18)-(21) was solved numerically using boundary conditions (11)-
(14) and some parameters were close to those used in the experiments by Honji and Haraguchi
[10]. A full comparison with the experiments is not possible since the information provided is
not complete. We estimated that in the experiments the Hartmann number was approximately
Ha ≈ 0.9, the dimensionless layer thickness was α = 0.167, and the blockage parameter β was
14%. We used these parameters for two different cases, namely, a) Re = 700, I = 605, and
b) Re = 1000, I = 1136. Since I >> 1, a considerable Lorentz force is obtained although
the Hartmann number used is much smaller that those used in Section 3. Figure 7 shows,
for both cases, the vorticity as a function of time on the centerline at a distance of 5 units
downstream of the point of maximum magnetic field intensity. The corresponding velocity field
in the neighborhood of the magnetic obstacle is also shown at the right-hand-side. In case a)
a steady vortex dipole was found, while in case b), numerical results show a vortex shedding
in the wake behind the magnetic obstace, with an Strouhal number equal to 0.05. Similar flow
patterns were found in the experiments made by Honji and Haraguchi, however, a quantitative
comparison is not possible with the information at hand. Anyway, numerical simulations are able
to grasp the main characteristic features of the experimental situation. A complete assessment
of the numerical model requires additional experimental data.

5. Conclusions
We analyzed the effect of Hartmann-Rayleigh friction in the emergence of instabilities in the
flow past a localized magnetic field. In the absence of friction, flow regimes are only determined
by the interplay of inertial, magnetic, and viscous forces in the bulk of the flow. Under certain
conditions, shear layers created by the opposition of Lorentz force to the oncoming flow, may
become unstable. The velocity deficit across the shear layers is the driving mechanism for
instabilities. In this context, Hartmann-Rayleigh friction acts as an stabilizing factor, delaying
the appearance of instabilities to larger values of the Hartmann number for a given Reynolds
number. In some cases, Hartmann-Rayleigh friction may completely inhibit the emergence of
flow instabilities. Its effect is also manifested in a reduction of the Strouhal number, compared
to cases where the friction is negligible. Further numerical and experimental work is necessary
to improve the description and understanding of flows in localized magnetic fields when electric
currents are injected in a thin fluid layer. Nevertheless, the present numerical simulations retain
important features observed experimentally,
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