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Abstract: An experimental study of dynamical regimes in Bénard - Marangoni convection, for 
various Prandt and Marangoni numbers, has been carried out in a confined geometry. Indeed, a 
small hexagonal vessel allowing the formation of only one convective cell, for a large extent of 
the Marangoni number, has been used. Fourrier spectra and a correlation function have been 
used to recognize the various dynamical regimes. For fixed values of the Prantl number and 
aspect ratio, an oscillatory, a quasi-periodic and chaotic states, were successively observed, as 
the Marangoni number was increased.  The correlation dimensions of strange attractors 
corresponding to the chaotic regimes were calculated. The dimensions were found to be larger 
then those calculated by other authors for the Rayleigh-Bénard convection in small aspect ratio 
geometries. The transition from temporal chaos to spatio - temporal chaos has also been 
observed. Indeed for higher values of the Marangoni number, spatial dynamics are observed. 
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1.  Introduction: 
In the hydrodynamical instabilities, chaotic dynamical regimes are often observed [1]. For example, in 
the convection instabilities, for a given convective pattern and a fixed value of the Rayleigh number, 
corresponds a dynamical regime. If the dynamics are chaotic, the observed chaos is temporal in a 
system for which spatial order is observed. Thus, temporal chaos is the name given to intrinsic 
randomness, i.e. random behaviour arising in a deterministic system. Temporal chaos in confined 
geometries has been observed in surface waves, Rayleigh-Bénard (RB) convection and in other 
hydrodynamical instabilities [1 – 3].  

The case of small aspect ratios is interesting to examine because the confinement restricts the 
spectrum of modes allowed in extended geometries to few competing modes. Temporal and spatial 
modes can then be dissociated allowing thus the description of the dynamical behaviour of the system. 
Such study has been performed for RB instability. Indeed, many experiments have been performed on 
the transition to chaos in RB convection, including period doubling, intermittency, and quasi-
periodicity [4]. Furthermore, measurements of the dimensions of attractors in RB chaotic regimes have 
confirmed the low dimensions at the onset of chaos in small aspect ratio systems [5], whereas the 
dimensions are larger for extended systems [6]. 



 
 
 
 
 
 

 

For Bénard-Marangoni (BM) convection (i.e., a horizontal fluid layer heated from below and 
cooled from above with an upper free surface), few works have been devoted to small vessels. These 
works dealt with the study of the onset of convection, the description of the convective patterns and 
the conditions of appearance of time-dependent flows [3]. More recently, a numerical study has been 
carried out on the transition to chaos for a fluid with a Pr number taken equal to zero [7]. 

The aim of this work is to recognize the different dynamical regimes which appear, when the 
vertical temperature difference is increased (Marangoni number increasing), using spectral methods 
and measuring the degree of strangeness of chaotic states by their correlation dimensions. As far as we 
know, such study has not been carried out.  The convective spatial patterns were linked to the 
corresponding dynamical regimes by taking pictures of the structure. The influence of Marangoni and 
Prandtl numbers, and the aspect ratio, has been considered. The first results of this study are reported 
in this paper.  

The outline of this paper is the following: experimental procedure and data analysis methods are 
described in section 2, typical experimental results are given in section 3; finally, some conclusions 
are given in section 4. 

2.  Experimental procedure and analysis methods: 

2.1.  Experimental set-up and procedure: 
The use of the deflection of a laser beam by Bergé [4] allowed recognizing the various dynamical 
regimes and the transition to chaos in RB convection, for which the deflection is due only to the 
temperature gradients inside the liquid layer. In this work, a vertical laser beam has been used (Figure 
1). The beam is reflected at first from the liquid-air interface (s) then the transmitted beam crosses the 
fluid layer perpendicularly to the horizontal (x, y) plane and is reflected from the bottom of the vessel 
(vs). The deflection (vs) is due to both the thermal gradients inside the fluid and the interface relief 
whereas the deflection (s) is due only to the interface deformation. On the screen (S), the deflections 
(s) and (vs) are recorded by a CCD camera and their values calculated thanks to software written by 
us. In this study only the beam (vs) has been considered. The time series recorded are then used to 
recognize and characterize the dynamical states using both spectral methods and dimensions of the 
attractors. 

The dynamics described below take place in a hexagonal vessel (h) filled with silicon oil (F) (20 
cst. or 50 cst. silicon oil) with lateral walls made of polycarbonate. The hexagonal vessel is surrounded 
by the same silicon oil which is limited laterally by the cylindrical container (C) (Figure 1). The fact 
that the polycarbonate has about the same thermal conductivity (λ = 0.185 W/m×K) as the silicone oil 
(λl = 0.16 W/m×K) and owing to the exitence of the oil guard ring, the lateral walls can be considered 
as thermally insulating.  

 
 

Figure 1. 
Experimental 

set-up. C: 
cylindrical 

container, h: 
hexagonal 

vessel,  
F: Fluid, M: 
Mirror, L: 
Laser, E: 

Screen, CCD: 
Camera. 

 



 
 
 
 
 
 

 

The dynamical behaviour of the system depends on the spatial convective pattern [4]. Indeed, the 
relationship between the spatial patterns and the dynamical regimes, in small aspect ratios, has been 
studied in RB experiments. In order to link the dynamical regime to the corresponding spatial pattern, 
pictures of the pattern have been taken. The visualization has been achieved by seeding the silicon oil 
layer using aluminum flakes. 

The dynamical behaviour of the system has been studied as a function of the Marangoni number 
(from 9.5 Mac to about 149 Mac, Mac is the critical value of Ma corresponding to the onset of 
convection), Prandtl number (Pr1 = 440 for 50 cst. silicon oil, Pr2 = 160 for 20 cst. silicon oil at 25°C) 
and the aspect ratio (Γ1 = 2.2 (d1 = 1 cm), Γ2 = 2.8 (d2 = 0.8 cm)), d being the depth of the silicon oil 
layer.  

2.2.  Analysis methods: 
The distinction between periodical and chaotic regimes can be achieved using the power spectrum of 
the dynamical variable which is the laser beam deflection in our case. In a periodical regime (i.e., non-
chaotic regime), the dynamical variable is a periodic or quasi-periodic function of time, therefore the 
power spectrum of the dynamical variable shows sharp peaks at the natural frequencies. On the other 
hand, in a temporally chaotic state, the power spectrum is continuous and does not show any sharp 
peaks. 

As for the attractor, it may be a fixed point, a limiting cycle, or an n-torus; each of them involving a 
regular behaviour in the sense that the state of the system at any time can be deduced from its previous 
states. Alternatively, the regime may be irregular or chaotic. In this case, it is claimed that the motion 
takes place on a chaotic or strange attractor; the distance between two points in the phase space 
increasing exponentially with time. Indeed, infinitesimal uncertainties in the knowledge of the initial 
state of a temporally chaotic system are therefore magnified exponentially, and it is impossible to 
determine exactly the future state of the system.  

The calculation method of the correlation dimension is as follows. Observation of a single variable 
x (t) allows the estimation of the complete orbit in a phase space. The method used involves the 
reconstruction technique [8-10] which consists in the following: the motion on an attractor in a n-D 
phase space is parameterized by taking n displayed values of the variable, x (t), x (t + T), …..              
x (t + (n – 1)T); T being a delay time. 

Strange attractors are typically characterized by a fractal correlation dimension (D) which is 
smaller than the number of degrees of freedom (F) of the system. The correlation dimension of an 
attractor is calculated from the locally measured time series by the method proposed by Grassberger 
and Procaccia [11, 12]. (D) is estimated by the exponent which is given by the asymptotic behaviour 
rD of the integral correlation function C (r, N): 
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Where N is the total number of points, H () is the Heaviside function and Xi is a vector in the n-D 
phase space obtained from the reconstructed time series using the delay time T. In practice, the 
correlation integral is evaluated by a sampling of reference points. The averaged number of points in 
hypersphers, centred on the reference points with radius r, was calculated to evaluate the above 
equation. The slope in the Ln – Ln plot of C (r), was determined using the least square method   
(Figure 2). C (r) was evaluated using 18000 to 250000 data points in order to meet the Tsonis criterion 
which considers (N) required for reliable calculations of the correlation dimension (D) to be 
exponentially related to the correlation dimension (that is N ~ 10 2 + 0.4D), 100 reference points and a 
maximum dimension of the phase space equal to 16 were used.   

The calculations have been carried out by increasing the dimension of the phase space until the 
convergence of the correlation dimension (D) is achieved. The software allowing the calculation of the 



 
 
 
 
 
 

 

correlation dimension has been validated using periodical functions (mono periodical, D = 1 and bi-
periodical, D = 2) and by calculating the dimensions of Hénon’s model attractor (D = 1.22 with        
N= 20000, a = 1.4 and b = 0.3) and Coullet – Feigenbaum’s model attractor (D = 0.50 with N = 20000, 
λ = 3.57). The dimensions, calculated using our software, are in good agreement with those calculated 
by other authors for the same theoretical model coefficients [13]. 

 

Figure 2. Integral correlation function for various dimensions (n) of the phase space (Ln – Ln plot). 
(n) varies from 2 to 16 (from left to right), the slopes of linear regions  give (D). 

3.  Typical results: 
For the experiment carried out at Pr1 = 440 and Γ1 = 2.2, the first bifurcation observed above the onset 
of convection is analogous to the Hopf bifurcation in RB convection, which leads to a time - 
dependent regime. Indeed, for Ma = 9.5 Mac, figure 3 shows a spectrum with one peak at the 
frequency   f1 = 0.7 Hz and its harmonics. By increasing Ma to 17 Mac, we observed a second peak at 
the frequency f2 = 1.1 Hz (Figure 4). All the other peaks can be analyzed as linear combinations of the 
two fundamental frequencies.  

 

Figure 3. Fourier spectrum of the beam deflection. The fundamental frequency f1 = 0.7 Hz and its 
harmonics. Ma = 9.5 Mac; Pr1 = 440 at 25 °C; Γ = 2.2. 



 
 
 
 
 
 

 

 

Figure 4. Fourier spectrum of the beam deflection. Bi-periodical regime. Ma = 17 Mac; Pr1 = 440 at 
25 °C; Γ1 = 2.2; f1 = 0.7 Hz and f2 = 1.1 Hz. 

With a new increase of Ma to 25.5 Mac, we observe a chaotic state characterized by a spectrum which 
exhibits a broad band noise without any sharp peaks (figure 5) and a correlation function which 
vanishes for a long period of time (figure 6). A continuous spectrum and a correlation function which 
vanishes for a long period of time is an indication of the system memory loss, becoming thus 
unpredictable and consequently chaotic. Such transition to temporal chaos via the quasi-periodicity 
has been also observed in the RB instability [4]. 

 

Figure 5. Fourrier spectrum of the beam deflection. Chaotic regime. Ma = 25.5 Mac; Pr1 = 440 at     
25 °C; Γ1 = 2.2.  

 
The chaotic behaviour is also observed in figure 7 which shows three spectra corresponding to 

three values of Ma (65 Mac, 109 Mac and 149 Mac). As Ma is increased, the broad band noise spreads 
to higher frequencies. The appearance of a broad band in the frequency spectrum is the indication of 
the transition to a chaotic state. However, to know if this chaos is random or deterministic and to 
measure the degree of strangeness, these spectra cannot be used. The aim of attractor construction and 
correlation dimension calculation is to provide such information. 

Thus, to follow quantitatively the evolution of the chaotic dynamical regimes with the increase of 
Ma, we have calculated the correlation dimensions of the corresponding attractors. It can be seen in 
figure 8 (a) that chaos develops as ΔT is increased and that (D) increases with decreasing Pr number. 



 
 
 
 
 
 

 

 

Figure 6. Auto - correlation of the beam deflection.  Chaotic regime. Ma = 25.5 Mac; Pr1 = 440 at  
25 °C; Γ1 = 2.2. 

At Pr1 = 440, the influence of the aspect ratio on the correlation dimension has been considered. 
The system is more complex for Γ = 2.8 than for a smaller aspect ratio (Γ = 2.2) (Figure 8(b)). This 
result has been also reached by Libchaber and Maurer [14], who showed for a RB experiment with 
helium, the large dependence of the temporal behaviour as a function of the aspect ratio. They 
observed periodical oscillations for Γ < 3 and chaotic regimes for Γ > 3.   

 

Figure 7. Fourier spectrum of the beam deflection. Chaotic regimes corresponding to various Ma.    
Pr1 = 440 at 25 °C; Γ1 = 2.2. 

As the dynamical regime is linked to the spatial convective pattern, pictures of the patterns have 
been taken. For example, Figure 9 shows pictures corresponding to the two values of the Pr number. 
Thus, one convective cell is observed for a large range of ∆T for Pr1 = 440 than for Pr2 = 160.. A 
breaking of the convective cell is observed at ∆T = 10°C for Pr2 and at ∆T = 15 °C for Pr1. Thus for 
these values of ∆T, transitions to spatio-temporal chaos are observed with the mobility of the pattern 
and the involvement of the spatial modes. 



 
 
 
 
 
 

 

    

        (a)               (b) 

Figure 8. Variations of the correlation dimension as a function of ∆T, Pr and Γ. 
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      (c)             (d) 
 

Figure 9. Pictures of the convective pattern, corresponding to various ∆T and Pr.  
Pr1 = 440: (a) ∆T = 5°C; (b) ∆T = 19.5 °C. Pr2: (c) ∆T = 5°C; (d) ∆T = 12.2 °C. 

The structures in (b), (c) and (d) are moving, the shown patterns are observed for a given time.  
 



 
 
 
 
 
 

 

 

4.  Conclusions:  
A transition to temporal chaos including the quasi-periodicity, as in RB convection, has been observed 
in BM convection in small aspect ratios (Γ = 2.2).  

The calculated dimensions of attractors (about 5 to 9) for the BM instability are larger than those 
found for the RB instability in confined geometries [5] (2-3) but they are close to those found by Sato 
et al. [6] (6.5 or 9)  in a quasi-one-dimensional RB system (Γx = 15 and  Γy = 1). Indeed, in our 
experiment, in addition to convection in the liquid as in RB convection, both surface tension and 
convection in the air layer above the silicon oil are involved, so that the number of independent 
variables to specify is larger than in the RB instability in small aspect ratio geometries (the dimension 
of an attractor is linked to the number of independent variables to specify the state of the system at any 
given time). 

The transition from temporal chaos to spatio - temporal chaos has also been observed. Indeed for 
higher values of the Marangoni number, spatial dynamics are observed. 
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