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Abstract

Results of nonlinear simulations of convective flows in two-layer
systems on different scales under the action of a temperature gradi-
ent along the interface, are presented. Both purely thermocapillary
flows and buoyant-thermocapillary flows are considered. Also, the
nonlinear development of the instability in ultra-thin films caused by
intermolecular forces, is investigated.

1 Introduction

The stability of convective flows in systems with an interface has been the
subject of an extensive investigation. Several classes of instabilities have
been found by means of the linear stability theory for purely thermocap-
illary flows [1]-[4] and for buoyant-thermocapillary flows [5]-[8]. For the
most typical kind of instability, hydrothermal instability, the appearance of
oblique waves moving upstream has been predicted by theory and justified in
experiments [9]-[11]. However, two-dimensional waves moving downstream
have also been observed in experiments [12]. The change of the direction of
waves propagation can be caused by the influence of buoyancy [5].

Most of the investigations have been fulfilled for a sole liquid layer with
a free surface, i.e., in the framework of the one-layer approach. In the
present paper, we consider thermocapillary flows in two-layer systems. The
paper is organized as follows. In Sec. 1, we consider the stability of purely
thermocapillary flows. In Sec. 2, the influence of buoyancy is studied. Sec.
3 is devoted to the investigation of nonlinear stability of ultra-thin two-layer
films flowing under the action of thermocapillary stresses. Sec. 4 contains
some concluding remarks.

2 Thermocapillary flows in two-layer systems

In the following section, we will consider thermocapillary flows in a two-
fluid system. We denote the variables of the bottom layer by subscript 1,



and the variables of the top layer by subscript 2. Let the space between
two parallel rigid plates z = —a; and z = a2 be filled by two immiscible
viscous fluids. The temperature on these plates is fixed in the following way:
T(z,y,—a1) = Az + 0, T(z,y,as) = Az. It is assumed that the interfacial
tension coefficient o decreases linearly with temperature: ¢ = g9 —aT'. The
buoyancy force is neglected. In the present section, the interface is assumed
to be a plane: z = 0.

The complete system of nonlinear equations can be written in the fol-
lowing dimensionless form:
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where v = vy /va, p = p1/p2, X = X1/X2 are ratios of kinematic viscosities,
densities and thermal diffusivities of fluids, P = v /1 is the Prandtl number
of the bottom fluid.
On the rigid horizontal plates, the following boundary conditions are
used:
z==1: vi=0,T1 =z, (3)

z=a: vo=0,Ty =z — b, (4)

where parameter b = ©/Aa; describes the relation between the character-
istic vertical and horizontal temperature differences. At the interface, the
normal components of the velocity vanish:

z2=0: v,1 =, =0; (5)
and the continuity conditions for the tangential components of the velocity
2 =0: V51 = Vg2, Vy1 = Vy2, (6)

for the tangential stresses
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are fulfilled. Here, 7 = 1 /12, k& = K1/k2 are ratios of dynamic viscosities
and heat conductivities of fluids, correspondingly, M = aAa?/mx; is the
Marangoni number.



In the limit of an infinite layer, it is necessary to impose some additional
conditions determining the pressure gradients in the system. If the flow
occurs in a channel that connects two vessels kept under the same pressure,
the mean longitudinal pressure gradient in the system is zero. The cor-
responding thermocapillary flow is usually called “linear flow” [4]. In the
case of a closed cavity, the mean longitudinal flux of fluid is zero, so that
the “return flow” occurs which is characterized by a nonzero longitudinal
pressure gradient. In the latter case,

0 a
/ dzU0(2) = 0, / dz U0 (z) = 0. (10)
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The calculation of stationary parallel flow profiles of both types has been
carried out in [13], [14]. The linear stability of a two-layer return flow has
been investigated in [14]. For relatively small values of b and large values of
M , the excitation of inclined hydrothermal waves has been predicted. These
waves move in the opposite direction to that of the flow at the interface. For
relatively large values of b and small values of M, the theory predicts the
appearance of stationary convective rolls due to Pearson’s instability. The
axes of rolls are ordered by the thermocapillary flow along the direction of
the imposed horizontal temperature gradient (“spiral flow”). For interme-
diate values of M, the convective rolls are ordered across the direction of
the horizontal temperature gradient, and they are drifted by the thermo-
capillary flow. Unlike the hydrothermal waves, the drifted rolls move in the
same direction as the flow at the interface.

The nonlinear simulations have justified these predictions [14].

3 Buoyancy-thermocapillary convection in
two-layer systems

In the present section, we include the action of buoyancy. We consider
only the case of a horizontal temperature gradient imposed in the direction
opposite to that of the axis z.

Recently, Madruga et al. [15], [16] studied the linear stability of two su-
perposed horizontal liquid layers bounded by two solid planes and subjected
to a horizontal temperature gradient. The analysis has revealed a variety
of instability modes. Specifically, for the system 5cS silicone oil - HT'70, the
analysis predicts a change in the direction of the wave propagation with the
growth of the ratio of the layers thicknesses.

In the present section, we describe results of nonlinear simulations of the
wavy convective regimes for the above-mentioned system of liquids [17].

For periodic lateral boundary conditions, there is a good coincidence be-
tween the predictions of the linear theory and the numerical results. Specif-
ically, the direction of the wave propagation is changed with the growth of
M (see Fig. 1).

The diagram of regimes is shown in Fig.2 (note that the Marangoni
number and the Grashof number are defined through the parameters of the
top liquid).
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Figure 1: Dependence of the wave velocity ¢ on the Marangoni number M
for G =0 (line 1), 1.5 (line 2) and 4 (line 3).

In the case of a purely buoyant flow (G # 0, M = 0), where G = R/P
is the Grashof number, convective cells of both signs which occupy a large
part of the area, are developed in the top layer. In the case of a purely ther-
mocapillary flow (M # 0, G = 0), the waves are developed simultaneously
in both layers. All the vortices are positive in the top layer and negative
in the bottom layer. Under the combined action of the buoyancy and the
thermocapillary effect, the wavy motion takes place mainly in the top layer.
One observes an essential asymmetry between the positive vortices, which
occupy a large area in the top layer, and a rather compact negative vortices
localized near the upper rigid plane.

The theoretical predictions obtained for infinite layers, cannot be directly
applied to flows in closed cavities, because of several reasons. First, in the
case of periodic boundary conditions one observes waves generated by a
convective instability of parallel flow, while for the observation of waves in
a closed cavity a global instability is needed [7]. Also, it should be taken
into account, that in the presence of rigid lateral walls the basic flow is
not parallel anymore. The lateral walls act as a stationary finite-amplitude
perturbation that can produce a steady multicellular flow in the part of the
cavity or in the whole cavity [7], [9], [18].

Nonlinear simulations have been carried out for the same system of fluids
in a finite region with L = 16. For sufficiently small values of M and G, a
steady flow is observed, which contains one cell in each fluid layer. With the
increase of M and G, an additional maximum of the stream function field
appears in each layer near the hot end. A subcritical oscillatory instability
of the steady flow generates an unsteady multicellular structure.
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Figure 2: The diagram of flow regimes for a = 1. A Parallel flow, ¢ traveling
wave moving to the left, O traveling wave moving to the right, x pulsating
wave moving to the left.

4 Two-layer ultra-thin films

In the case of very thin (but still macroscopic) films, when the film thickness
is less than about 100 nm, a new physical phenomenon has to be incorpo-
rated into the model. It is necessary to take into account the long-range
intermolecular forces acting between molecules of the liquid and substrate
[19], [20]. It is essential that these forces act on distances large relative to
interatomic distances. Hence, despite their microscopic (quantum) origin,
they can be incorporated into a macroscopic theory. In the framework of
the continuum approach, the intermolecular forces manifest themselves as
‘surface forces’ or ‘disjoining pressure’ II(h) = df (h)/dh (see, e.g., [21]),
which can be considered as a certain external normal stress imposed on the
free surface. The sign of the disjoining pressure can be either positive or
negative.

If the film is formed from an apolar fluid, the only relevant kind of long-
range intermolecular interaction is van-der-Waals interaction U(r) ~ 1/r8.
In that case, the disjoining pressure can be taken as

I(h) = A/6mh°, (11)

where A is the dimensionless Hamaker constant [19], [22].

A theoretical description of two-layer ultra-thin films has been developed
in [23]-[26]. The system involves two deformable interfaces z = Hi(r,t)
(liquid-liquid) and z = Hs(r,t) (liquid-gas). One has to take into account
two disjoining pressures 1y (Hy, Hy) and T, (H;, Hs), applied at each inter-
face:

at 2z = Hl, P1 - P2 = —0'1V2H1 + Hl(Hl,HQ);

at z = Hy, P, — Py = —O'QVZHQ + HQ(Hl,HQ),



where o1 and o2 stand for interfacial tensions at the corresponding inter-
faces, and P, is the atmospheric pressure.

The total potential energy of the van der Waals interactions ¥ = ¥, +
¥y + Uys includes the energy ¥, of the substrate interaction with layer 2
across layer 1, the energy ¥, of the gas phase interaction with layer 1 across
layer 2, and the energy ¥y» of the interaction between the gas phase and
the substrate across two layers [19], [26]
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where Azg, As1 and Ayy are Hamaker constants characterizing the interac-
tions between the solid substrate and the gas across the two layers, between
the solid substrate and liquid 1 across liquid 2, and between the gas phase
and liquid 2 across liquid 1, correspondingly. The disjoining pressures are

computed as

ov |
IL;(Hy, Ha) = o) = L,2. (13)
j

Finally, the dimensionless equations governing the evolution of layers thick-
nesses can be written as [26]

Hir+V-Q=0,Hr+V-Qy=0, (14)

where the fluxes Q; and Q- include the contribution of the flow generated
by pressure gradients and that of the thermocapillary flow:

Q1 = fi1tVPL + f1aV P, Q2 = fo1 VP + f2oVP. (15)

The mobility functions are:
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The linear stability theory of a two-layer film reveals bending modes
(in-phase deformations of interfaces), and squeezing modes (out-of-phase
deformations of interfaces). Unexpectedly, gravity effects can be relevant for
the dynamics of a two-liquid system (Fisher and Golovin, 2005). Depending



on parameters, the time evolution may lead either to a blow-up film rupture
(“swiss-cheese” dewetting pattern), or to formation of coarsening drops.
Merkt et al. [27] investigated a two-layer system sandwitched between
two rigid plates, with one liquid-liquid interface. It turns out that the
dynamics of such systems cannot be described in a local way by the interface
profile h(r), but needs for its full description also the stream function fr)
of the horizontal mean flow.
°§3§§ .
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Figure 3: Isolines of h; at different moments of time: (a) ¢ = 240; (b)
t = 330; (c) t = 500; (d) t = 800; M = 0. The mean values {(h;) = 1.2;
(he) = 1.

Below we consider the decomposition of a laterally heated two-layer film
caused by the intermolecular forces. Longwave equations which incorporate
both the thermocapillary flows and the influence of the van der Waals in-
teractions have been derived. These equations contain additional term in
the expressions for fluxes,

Qi = Fi1VP, + FisVP + Qfe,, Qo = o1 VP + Fpo VP + QF e, (20)

where e, is the unit vector of the axis z,

a1 +az)A
oF - _%H& 21)
as A a +a
QF = _22?(}12 —H)? - #AHl(sz — Hy); (22)

A is a constant temperature gradient imposed in the direction of the axis
2 at the substrate. Expressions (21) and (22) provide a generalization of a
similar expression known for a one-layer film [28].
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Figure 4: Isolines of h; at different moments of time: (a) ¢ = 200; (b)
t = 330; (c) t = 440; (d) t = 2000; M = 0.35. The mean values (h;) = 1.2;
(h2) = 1.

In the absence of a lateral heating, droplets are developed on the back-
ground of a thin film. A slow coarsening of the droplets system takes place
due to the droplets coalescence and Ostwald ripening (see Fig. 3). In the
presence of a lateral heating, the droplets of different sizes are drifted with
different velocities. This circumstance leads to a fast anisotropic coales-
cence of droplets and formation of “rivulets” oriented along the direction
of the thermocapillary force (see Fig. 4). The last phenomenon resembles
processes observed in simulations of the driven Cahn-Hilliard equation [29)].

5 CONCLUSIONS

We have performed nonlinear simulations of wavy convective regimes that
developed under the action of a temperature gradient along the interface.
The diagram of regimes for buoyant-thermocapillary convection has beem
obtained. Different scenarios of the decomposition of ultra-thin two-layer
films into droplets have been revealed, and the droplets dynamics has been
studied.
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