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Abstract

A numerical parametric study of droplet deformation within
an axisymmetric micro-fluidic contraction is performed. Both
Newtonian and Non-Newtonian shear-thinning fluids are con-
sidered for the droplet phase. Droplet deformation is found to
be largest when surface tension forces are lowest, and inertial
forces highest. The Non-Newtonian droplets behave quite dif-
ferently to their Newtonian counterparts, primarily because the
high strain rates experienced within the contraction result in low
internal viscosities. This can allow instabilities to develop on
the droplet surface.

Introduction

In the field of two phase micro-fluidics, the simple contraction
is a tool that can be used to stretch, shear, break or otherwise de-
form a droplet. Droplet behaviour within such micro-sized de-
vices differs from that within larger sized systems because sur-
face effects, such as surface tension forces, assume greater im-
portance. Knowledge of droplet behaviour within such contrac-
tions would be beneficial to applications such as micro-reactors,
where the controlled deformation of droplets to enhance mix-
ing, heat or mass transfer rates is desirable.

There have been few experimental studies concerned with im-
miscible fluids passing through micro-fluidic contractions. An
exception to this is the work of [1] who used a micro-fluidic
contraction as a ‘flow focusing’ device to break a stream of
disperse phase fluid into droplets. The deformation of larger,
millimetre sized droplets moving through contractions has been
studied experimentally by several researchers, including [4].
Numerical investigations of droplets moving through contrac-
tions have generally employed the creeping flow approxima-
tion, however, [10] used the full Navier-Stokes equations when
simulating droplet deformation through millimetre sized con-
tractions. Droplet deformation in general extensional and shear
flows has been extensively studied both experimentally and nu-
merically. [3] and [8] give good reviews of this topic.

The purpose of this study is to perform a parametric numerical
study of droplet deformation in an axisymmetric contraction,
focusing in particular on regimes relevant to micro-fluidic de-
vices. Due to the importance of organic and polymer suspen-
sions in micro-fluidic applications, we consider shear thinning
Non-Newtonian fluids for the disperse phase as well as Newto-
nian fluids.

Problem Description

As shown in figure 1, the problem under consideration con-
sists of a droplet entrained in a continuous liquid phase passing
through a 4 : 1 axisymmetric contraction. All lengths are non-
dimensionalised by the radius of the inletR, so that the con-
traction radius is 1/4, the contraction length is 5 and the initial
droplet diameter is 1.

diameter d = 1

initial droplet
centre (0,11)

(1,12)
(0.25,10)

(1,10)r
(1,0) (0.25,5)

z

Figure 1: The geometry used in the computational problem. All
lengths are normalised by the inlet radiusR and cylindrical co-
ordinates(r,z) are used.

Three equations are used to describe motion throughout the dis-
perse (ie, droplet) and continuous phases; a continuity equation,
a volume-averaged incompressible Navier–Stokes momentum
equation, and an advection equation which describes the evolu-
tion of the disperse phase volume fractionφ,

∇ ·u = 0 (1)
Duρu

Dt
=−∇p+

1
We

κδ(x)n+
1

Re
∇ ·µ[∇u+(∇u)T] (2)

Duφ
Dt

= 0 (3)

All three equations are employed in a non-dimensional form.
Velocity is scaled by the average inlet velocity, ¯v, length by the
inlet radiusR, density by the disperse phase densityρ∗d and vis-
cosity by the disperse phase viscosityµ∗d. The asterix in these
equations implies a dimensioned quantity.

The second term on the right of equation (2) is a surface tension
induced stress jump which occurs at the disperse-continuous
phase interface. In this termκ is the signed local curvature of
the interface,δ(x) is the Dirac delta function, non-zero only on
the interface, andn is a unit vector directed normal to the inter-
face and into the disperse phase. As the equations are applied
over both phases, the viscosityµ is a function of the local vol-
ume fraction,φ. The densityρ is not a function ofφ however
as it is assumed to be equal in both phases. Gravitational forces
have been neglected as their effect in liquid-liquid micro-sized
flows is small.

In this study the behaviour of the droplet as it passes through the
contraction is determined by a balance between three types of
forces — inertial, viscous and surface tension. Ratios between
these forces are given by the Reynolds (Re), Weber (We) and
capillary (Ca) numbers, defined by

Re=
ρ∗dv̄R

µ∗d
, We=

ρ∗dv̄2R

σ
and Ca=

We
Re

=
v̄µ∗d
σ

,

respectively. A simple order of magnitude analysis on mo-
mentum equation (2) shows that the strength of surface tension
forces relative to both viscous and inertial forces can be mea-
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(a) Re= 1.30, We =
100, Ca= 76.8, S =
0.00566
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(b) Re= 2.08, We= 1,
Ca= 0.481, S= 0.676
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(c) Re = 3.33, We =
0.01, Ca= 0.003, S=
76.9
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(d) Re= 0.0412, We=
0.1, Ca = 2.42, S =
0.395
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(e) Re= 33.3, We= 1,
Ca= 0.03, S= 0.971

Figure 2: Images of droplet shapes produced by the Newtonian simulations. Each image was produced by reflecting the two dimensional
cylindrical data around thez= 0 centreline. In each figure several droplet shapes are shown at the indicated non-dimensional times.
The streamlines shown in faint grey were produced by tracing massless particles over a stationary velocity field corresponding tot = 2.

sured via another number, termed S. Formally this number is
defined as

S =
1

We+Ca
=

σ
v̄µ∗d +ρ∗dv̄2R

.

As a balance between three forces determines droplet be-
haviour, only two of the above non-dimensional numbers are
required to classify a particular flow regime. In the following
we use Re and S — Re specifies the ratio of inertial to viscous
forces acting in the flow, while S specifies the magnitude of
surface tension present, relative to the other forces combined.

Both Newtonian and Non-Newtonian drops are simulated in this
study. For the Newtonian cases, we let the continuous phase vis-
cosity equal the disperse phase viscosity so thatµ= µd = µc = 1
everywhere. This assumption could be applicable in modelling
a light oil droplet entrained in a continuous water phase.

For the Non-Newtonian cases we employ the Carreau model
to describe a shear-thinning droplet phase. The Carreau model
relates the non-dimensional local disperse phase viscosityµd to
a non-dimensional ‘infinite shear rate’ viscosityµd,∞ via

µd−µd,∞
1−µd,∞

= [1+(λγ̇)2](n−1)/2, (4)

whereλ is a time constant,n is a ‘power-law exponent’ and the
total shear rate is given bẏγ =

√
∇u : [∇u+(∇u)T]. For the

Non-Newtonian cases all viscosities are scaled against the ‘zero
shear rate’ disperse phase viscosityµ∗d,0 instead ofµ∗d. In this
study we have chosenµd,∞ = 0, λ = 1 andn = 0.2. Such values
could represent a droplet consisting of a semidilute polystyrene

particulate suspension, for example.

Simulation Method

The simulations were performed using a finite volume code due
to [7], adapted to model shear-thinning fluids. This code has
been successfully used to model the formation and subsequent
‘pinch-off’ of both Newtonian and Non-Newtonian pendant
drops [2] and the deformation of Newtonian droplets through
millimeter sized contractions [10]. The Volume of Fluid (VOF)
technique is used to track the disperse-continuous phase inter-
face, and surface tension forces are applied using a variation of
the Continuum Surface Force (CSF) model. The VOF function
is advected using the Youngs scheme. The domain is discretised
using a structured, uniform and staggered mesh.

For all of the simulations presented here, a mesh of dimensions
64× 768 was used. It was found that using a finer mesh did
not significantly alter droplet deformation behaviour. The fluid
entering the domain was assumed to have a fully developed
Newtonian profile, however tests showed that droplet behaviour
within the contraction was quite insensitive to the form of this
profile. At the exit the pressure gradient normal to the outlet
port was chosen to ensure global mass conservation. All do-
main walls were non-slip, and non-wetting with respect to the
disperse phase liquid. The simulations were performed in se-
ries on a Beowulf cluster of Linux boxes with each simulation
typically requiring several weeks to complete.

Results: Newtonian Droplets

Figure 2 shows selected droplet shapes at various non-
dimensional times for a variety of Re and S numbers. Figure



2(a) shows the results of a simulation conducted with a mod-
erate Re but low S. The low value of S implies that surface
tension forces are small here and as a result, surface tension
has only a small effect on the deformation of this droplet. A
characteristic feature of this simulation is the forked tail that
the droplet develops within the contraction. This tail develops
because the centreline velocity within the contraction is higher
than that near the walls of the contraction. This causes the in-
terface of the droplet near the centreline to move faster through
the contraction than the interface located at positions of largerr
resulting in the observed ‘fork’. As surface tension effects are
very weak, the droplet does not return to the form of a sphere
before reaching the outlet port.

Figure 2(b) shows a simulation with a similar Re to that shown
in figure 2(a), but now with a moderate value for S. The higher
surface tension forces act to smooth interface regions of high
curvature. As a result, the tail that the previous droplet de-
veloped within the contraction is almost absent, and after the
droplet leaves the contraction, it returns to a more spherical
shape. Figure 2(c) shows a simulation where S has been in-
creased to a high value. Surface tension effects here are so great
that significant shape changes only occur when the droplet is
constrained by the contraction walls. Thus, within the contrac-
tion the droplet forms a long capsule having approximately the
same radius of the contraction, while beyond the contraction, it
quickly reforms back to its initial spherical state.

Two other moderate S number simulations are shown in figure
2. Figure 2(d) shows a simulation conducted with a S number
that lies between that of figure 2(a) and 2(b). As a result the
surface tension forces present in this example are greater than
those in figure 2(a), but less than those in figure 2(b). Conse-
quently the droplet shapes in figure 2(d) are generally smoother
in form than those in figure 2(a), but less spherical than those of
figure 2(b). The low Re of figure 2(d) relative to 2(a) appears
to have little effect on droplet behaviour, implying that inertial
forces in both simulations are almost absent.

Figure 2(e) shows a case with a slightly higher value for S
than in figure 2(b), but with a substantially higher Re. The
larger inertial effects experienced in this case result in a strong
jet of fluid emerging from the contraction, and this jet drives
large recirculation zones that extend beyond the computational
boundaries. As the recirculation zones extend beyond the com-
putational domain, their behaviour may not be well resolved.
However, tests conducted using a variety computational do-
main sizes have shown that the shape of these recirculation
zones does not significantly affect droplet deformation here,
most probably because the droplet does not enter these zones
during the simulation.

The larger inertial effects present in figure 2(e) mean that the
droplet requires a longer time to accelerate at the entrance to the
contraction. Once within the contraction however, the droplet
forms a fine thread of fluid whose leading tip moves at approx-
imately the contraction centreline velocity, significantly faster
than observed in the lower Re cases. As the inertia of this fila-
ment is high, its shape remains substantially intact after leaving
the contraction.

A characteristic feature of this example is the bulging of the
leading tip of the droplet as it moves through the domain. This
bulging is the result of surface tension forces which increase
the pressure inside the high curvature region at the tip of the
thread, in turn pulling this tip back towards the main body of the
droplet. The development of this type of bulging has been stud-
ied numerically by [5] for the case of low inertia fluids, however
a corresponding study for inertial flows is not available.

Results: Non-Newtonian Droplets

Figure 3(a) shows results for a Non-Newtonian droplet. The
Re and S numbers used in this simulation, although now based
on the zero shear rate disperse phase viscosity, are the same as
those used in the example of figure 2(b). At the entrance to
the contraction, the fluid experiences both high extensional and
shearing strain rates and this causes the viscosity of the droplet
phase to decrease. In fact, between the heights ofz= 11 andz=
9 in this example, the viscosity within the droplet decreases by
approximately two orders of magnitude. This level of decrease
is typical of all of our Non-Newtonian contraction simulations
and means that the droplets in these simulations behave in a
largely inviscid manner.

An interesting characteristic of shear thinning fluids is that the
viscosity generally decreases more than one might expect based
on Newtonian strain rate calculations. As the strain rate of a
shear thinning fluid increases, its viscosity decreases, leading to
smaller viscous stresses. This decrease in viscous stresses gen-
erally increases the strain rate, in turn reinforcing the decrease
in viscosity. In the droplet shown in figure 3(a) for example,
although the strain rate in the continuous phase at the bottom
of the computational domain is quite low, the strain rates within
the droplet phase are significant as the fluid here is almost in-
viscid. These high strain rates reinforce the low viscosity, with
the result that the viscosity of the leading tip of the droplet re-
mains low for a considerable distance below the lower edge of
the contraction. Indeed, the behaviour of this leading tip is quite
different to that shown in the Newtonian case of figure 2(b). It is
closer to the behaviour displayed in the higher Reynolds num-
ber Newtonian case of figure 2(e).

Figure 3(a) also shows that at the indicated time, small dis-
turbances have developed along the interface of the stretched
droplet. As both inertial and viscous effects may be important
in the continuous phase here, neither the low Reynolds num-
ber stability analysis of [9] or the solely inviscid disperse phase
analysis of [6] are relevant in predicting the dominant wave-
length at which disturbances might grow along this cylinder.

The next three frames, figures 3(b), 3(c) and 3(d), show the
movement of a lower Re droplet as it exits the contraction.
In this example the strain rates at the contraction entrance are
higher than in figure 3(a), so that the viscosity of the droplet
phase within the contraction is lower. The two most striking fea-
tures of this deformation are the large instabilities which grow
along the extended droplet, and the unusual ‘arrow’ shape that
forms once the leading tip of the droplet exits the contraction.

As the Reynolds number that characterises this flow is very low,
inertial forces within both phases are small relative to viscous
forces within the continuous phase, so the behaviour of the
droplet is largely determined by the continuous phase viscous
forces. This means that the creeping flow stability analysis of
[9] is now relevant in predicting the wavelength of maximum
capillary wave growth rate on the droplet surface when it is in
the contraction. Assuming a constant viscosity ratio of 0.001
within this cylinder, [9]’s analysis suggests that the wavelength
of disturbance having the maximum growth rate on the surface
of this cylinder would be around 1.0 non-dimensional length
units. This appears to be slightly larger than the wavelengths of
disturbances displayed in the figure, but of a similar magnitude.

Figures 3(b) through to 3(d) show the development of the lead-
ing tip of the droplet as it exits the contraction. As the viscosity
of the droplet is low within this region, the deformation of the
droplet front is largely determined by the low Reynolds number
flow pattern of the surrounding fluid. Thus, as the tip exits the
contraction, its front is decelerated and its edges expand radi-
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(a) Re= 2.08, We= 1,
Ca= 0.481, S= 0.676,
t = 0.28
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(b) Re= 0.0412, We=
0.1, Ca = 2.42, S =
0.395,t = 0.16
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(c) Re= 0.0412, We=
0.1, Ca = 2.42, S =
0.395,t = 0.18
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(d) Re= 0.0412, We=
0.1, Ca = 2.42, S =
0.395,t = 0.34
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Figure 3: Droplet shapes produced by the Non-Newtonian simulations. The streamlines shown in faint grey were produced by tracing
massless particles over the instantaneous velocity field of the continuous phase from the indicated time. The shading shows the non-
dimensional local viscosity within the drop.

ally, causing it to shorten and ‘bulge’ (figure 3(c)). After some
time elapses however the higher velocity that the droplet expe-
riences along the centreline of the domain advances the centre
of the tip further than its slowly advancing radial ‘wings’. This
results in the unusual ‘arrow’ type shape seen in figure 3(d).
Shapes similar to this have been observed in higher Reynolds
number simulations conducted by [10, unreported]. It is inter-
esting to note that even after the tip of the droplet has reached
approximately five contraction diameters from the lower edge
of the contraction, the viscosity of the droplet is still around
three orders of magnitude below the zero shear rate value.

At later times, small amounts of fluid separate from the main
droplet just below the contraction exit, as is evident in Figure
3(d). This behaviour is caused by waves along the fluid fila-
ment shortening and expanding radially as the droplet exits the
contraction and decelerates. While this behaviour appears to
be mesh independent, due to the small size of the ejected fluid
elements its existence should be treated with caution until ex-
perimentally validated.

Conclusions

The deformation of both Newtonian and shear-thinning Non-
Newtonian droplets as they pass through an axisymmetric
micro-fluidic contraction has been simulated over a range of
Re and S. Depending on the balance of inertial, viscous and
surface tension forces acting in the fluid, a variety of droplet
shapes were simulated including thick ‘capsules’, thin ‘rods’
and unstable filaments. Future work will extend the analysis to
systems where the viscosity ratio between the two phases is not
one, and where droplet breakup is known to occur.
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