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1formerly: Research School of Earth Sciences,
The Australian National University, Canberra, ACT 0200 AUSTRALIA

2currently: Discipline of Oceanography, School of Physical, Environmental and Mathematical Sciences,
University of New South Wales at ADFA, Canberra, ACT 2600 AUSTRALIA

3Ecole Normale Supérieure, Paris, FRANCE

Abstract

An idealised model is used to investigate the effects of variable
wind forcing on basin-scale wind-driven ocean circulation. The
circulation displays a rapid poleward current along the western
coast which separates to form a free jet. Parameters are chosen
so that the jet has a periodic time-variation under steady wind
forcing, and we investigate how this intrinsic periodicity can be
disrupted by a periodic variation in the wind forcing.

We show that the intrinsic oscillation is a linear instability of the
jet which has saturated at finite amplitude, and eddy shedding
occurs when negative streamfunction anomalies arrive at the ter-
minus of the jet. When the forcing is periodic, Rossby waves
carry the flow adjustment westward across the basin and the
arrival of maxima produces periodic variations in the strength
of the jet. If the forcing variation is sufficiently large and has
a period close to a rational multiple of the intrinsic period, it
can drive the jet instability, resulting in eddy shedding which is
locked onto a rational multiple of the forcing period (nonlinear
resonance). With weaker variations the eddy-shedding period
may remain independent of the forcing, yielding a quasiperi-
odic flow. Chaotic or partially locked states are also observed,
with variability on timescales far exceeding either the natural or
forcing periods.

Introduction

The large-scale horizontal flow of subtropical oceans takes the
form of a recirculating gyre in each ocean basin. Gyre circula-
tions are highly asymmetric: a slow equatorward wind-driven
flow (Sverdrup drift) occupies most of each basin, and this
fluid returns poleward in a much faster and narrower current
along each western boundary. These western boundary cur-
rents (WBCs), such as the Gulf Stream and East Australian Cur-
rent, are among the most energetic features of ocean circulation.
WBCs are climatically important due to their heat transport, and
their variability has been implicated in climate fluctuations.

Dynamical-systems studies of idealised WBCs [11, 6, 3, 9] have
revealed periodic, quasiperiodic and chaotic behaviour under
steady wind forcing, with variability on seasonal to decadal
timescales. Thus WBC variations may result from ocean-only
dynamics, but since these intrinsic timescales overlap with those
of the atmospheric forcing (e.g. the annual cycle, and the North
Atlantic Oscillation) it is likely that variable wind forcing also
plays a role.

An unstable WBC under variable forcing can be regarded as a
forced nonlinear oscillator, and we may expect some of the be-
haviour typical of a forced nonlinear pendulum [1, 4]. The fre-
quency of a nonlinear oscillator depends on its amplitude, and
can therefore be shifted to allow resonance with a mismatched
forcing frequency. Nonlinear oscillators can also resonate with
forcing at a rational multiple of their natural frequency, or dis-
play a chaotic or quasiperiodic response to variable forcing.

These nonlinear effects may explain the response of ENSO to
the annual cycle [7]. We investigate the relevance of these pro-
cesses to WBC variability using an idealised model of a gyre
driven by wind with a periodic component. We model the hori-
zontal flow using the barotropic vorticity equation

∂Q
∂t

+ J(ψ,Q) = W −δSζ+δ3
M∇2ζ, (1)

whereψ is the streamfunction for the horizontal velocity,ζ =
∇2ψ is the relative vorticity,Q = δ2

I ζ + y is the potential vor-
ticity, y is the northward position,J is the Jacobian operator
andW (t) = −1+ Asin( fw t) is the forcing by a spatially uni-
form anticyclonic wind stress curl with a periodic perturbation
of amplitudeA and frequencyfw. y is scaled by the basin width
L, ψ is scaled by Sverdrup transportψSv = τ/(ρβH), and the
time t is scaled byL2/ψSv, whereτ is the surface wind stress,
ρ is the fluid density,β is the northward gradient of the plan-
etary vorticity1 and H is the depth. The flow is governed by
three dimensionless parameters:δS = (βLH)−1

√

AV f /2 and
δM = L−1(AH /β)1/3 control the strengths of bottom and lateral
friction, respectively, andδI =

√

ψSv/βL3 controls the impor-
tance of advection.AV andAH are the coefficients of vertical and
horizontal turbulent diffusion andf is the Coriolis parameter.

Flow governed by equation (1) has been studied numerically
and in the laboratory in a basin with a circular no-slip boundary
under steady forcing (A = 0) [2, 5, 8], and has a Hopf bifurcation
from steady flow to periodic eddy-shedding from the WBC jet at
a criticalδI depending onδS andδM. We fixedδS = 1.01×10−2,
δM = 8.67×10−3 andδI = 2.78×10−2, to give periodic flow
(with “natural” frequency fn) when A = 0, and surveyed the
behaviour in the( fw,A) parameter space with over 230 runs
(see figure 1). We studied the perturbation problem by writing
ψ = ψ+ψ′, Q = Q+Q′, ζ = ζ+ζ′, where the overbars denote
the unstable steady state solution to (1) withA = 0 (obtained
numerically by Sheremet’s method [10]), and the dashed quan-
tities are the solution to the perturbation equation

∂Q′

∂t
+ J(ψ,Q′)+ J(ψ′,Q)+ J(ψ′,Q′)

= Asin( fw t)−δSζ′ +δ3
M∇2ζ′.

(2)

This system was solved in polar coordinates using the finite-
volume code described by [8]. The linear stability was also
investigated, by neglecting the nonlinear termJ(ψ′,Q′).

Results and Discussion

Figure 2 shows the periodic eddy-shedding cycle under steady
forcing. The slow southward interior flow is returned in a rapid
WBC which separates from the boundary to form an unstable

1β is a weak function ofy to match the laboratory experiments of [5]
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Figure 1: Locked regimes with various frequency ratios in the
( fn/ fw,A) plane (the points outside the labelled regions yielded
quasiperiodic or chaotic flow).

(a) 135 steps (b) 405 steps

(c) 675 steps (d) 945 steps

Figure 2: One eddy-shedding cycle under steady forcing.
Streamlines indicateψ+ψ′ and colours indicateψ′ (blue, green
< 0 < yellow, red).

(a) 35 steps (b) 175 steps

(c) 315 steps (d) 455 steps

(e) 595 steps (f) 735 steps

(g) 875 steps (h) 1015 steps

Figure 3: Eddy-shedding locked to double the forcing period,
with fn/ fw = 0.52, A = 0.10. The frames show two forcing
periods, over which the flow completes one cycle. Streamlines
indicateψ+ψ′ and colours indicateψ′ (blue, green< 0 < yel-
low, red).



jet. The finite-amplitude perturbation in figure 2 closely resem-
bles the most unstable linear eigenmode (not shown) but has an
asymmetry between positive and negative perturbations. Eddy
shedding corresponds to the arrival of negative streamfunction
anomaliesψ′ at the terminus of the jet. It appears that the insta-
bility growth saturates at finite amplitude due to energy loss by
Rossby wave radiation (visible as the waves in the interior).

Figure 4(a) shows the flow’s response to switching on the forc-
ing perturbation (upper curve:W ; lower curve: perturbation
kinetic energyK). The “natural” oscillation under steady forc-
ing changes to a larger-amplitude, higher-frequency oscillation
locked to fw = 1.35fn. This locking is evident in the plot of
K vs.W (figure 4(b)), and has also been observed in a labora-
tory realisation of this system. Physically, the eddy-shedding is
locked to fw via forced fluctuations of the WBC mediated by
Rossby waves, whose transit time across the basin produces a
lagged response.

Locking at a wide variety of other rational frequency ratios was
also observed; various locking ratios occur in complicated in-
terleaved regimes in the( fn/ fw,A) plane (figure 1), reminis-
cent of “Arnol’d tongues” which occur with a forced nonlinear
pendulum [1, 4]. Increasing the driving amplitudeA increases
the nonlinearity of the flow perturbation and allows locking to
occur with a larger mismatch betweenfw and fn.

Figure 5 shows an example of eddy-shedding locked tofw/2 =
0.89fn (the power spectrum in figure 5(c) shows the shift in the
fundamental frequency from its (dashed) natural value). Fig-
ure 3 shows how westward-propagating Rossby waves medi-
ate this locking by driving WBC perturbations which trigger
eddy shedding. Locking may be absent whenA is small and
the mismatch large (fn/ fw far from a simple rational), giving
a quasiperiodic response (having a line spectrum with two in-
commensurate fundamental frequencies) as in figure 6. In other
cases chaos was observed: figure 7 shows a response with par-
tial locking onto fw/5≈ fn/4, but unpredictable variations and
broad-band noise in the spectrum. Note the large amount of
power at frequencies well below bothfw and fn.

Conclusions

Despite the high dimensionality of this fluid system, the non-
linear response of an unstable WBC to variable forcing shows
a remarkable concurrence with low-dimensional driven pendu-
lum theory. Locked “Arnold’d tongues” are observed, as well
as chaotic states with low-frequency variability which is absent
from the forcing or ocean in isolation. These results suggest
that these nonlinear effects could contribute to low-frequency
western boundary current variability.
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Figure 4: Locking to forcing frequency:fn/ fw = 0.74,A = 0.133. The final attractor in (b) is shown in yellow.
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Figure 5: Locking to 1/2 forcing frequency: fn/ fw = 0.56, A = 0.133
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Figure 6: Quasiperiodic state: fn/ fw = 0.30, A = 0.0333

100.0 105.0 110.0 115.0 120.0 125.0 130.0
0.0

0.0005

0.001

0.0015

0.002
(a) Perturbation kinetic energy and wind forcing

Time (forcing periods)

P
er

tu
rb

at
io

n 
ki

ne
tic

 e
ne

rg
y

-1.0

-0.5

0.0

W
ind forcing

0.0 0.5 1.0 1.5 2.0 2.5
1.0e-006
1.0e-005

0.0001
0.001
0.01

0.1
1.0

10.0
100.0

1000.0
10000.0

(c) Perturbation kinetic energy power spectrum

Frequency (cycles per forcing period)

P
ow

er
 s

pe
ct

ra
l d

en
si

ty

0.0 0.0002 0.0004 0.0006
0.0

0.0002

0.0004

0.0006

(b) Perturbation kinetic energy delay plot

Perturbation kinetic energy (delayed)

P
er

tu
rb

at
io

n 
ki

ne
tic

 e
ne

rg
y

Perturbation kinetic energy
Wind forcing

Figure 7: Chaotic state: fn/ fw = 0.78,A = 0.0167


