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Abstract

A model for inertial range intermittency and anomalous scaling
of velocity structure functions is proposed. This model is sim-
ilar to the Kolmogorov log-normal model except that velocity
difference statistics are assumed instead of dissipation statistics.
The Navier-Stokes equation is used to derive the basic law for
the instantaneous velocity difference between two points. This
gives incomplete information about the dependence on scale
size and requires a statistical hypothesis in order to compute
structure functions and other quantities. The specific assump-
tions made here relate the singular exponent to the velocity am-
plitude and give results which agree well with experiment.

Introduction

The purpose of this paper is to study the statistics of the velocity
difference between two neighboring points in a turbulent flow.
Structure functions of turbulence theory are defined by averages
of the velocity difference between neighboring points:

Bp(r) =< (v-7)P > (1)

where v(r,x) = u(x+r)—u(x). We have restricted to longi-
tudinal components in this definition. The classical result of
Kolmogorov[1] is By =Cp(er) P/3, where ¢ is the mean dissipa-
tion at a point. It is convenient to use a length scale L defined
by £ = U3/L where U is the rms velocity fluctuation, then the
Kolmogorov result is By = CpU P(r/L)P/3. Experimentally it
has been found that Bp ~ UP(r/L)% where {p < p/3. This
has been interpreted as being caused by extreme intermittency
in the instantaneous dissipation which has an effect on velocity
difference statistics even at inertial range scales.

Asymptotic Analysis

Partial Lagrangian Coordinate System

The starting point for an analysis of structure functions is an
equation for the difference in velocity between two points. Such
an equation may be derived by letting one of the points, X, be
a Lagrangian fluid particle, moving with the fluid. The second
point, which is not Lagrangian, is slaved to the motion of the
first with fixed separation r. It may be easily shown[3] that v
satisfies the Navier-Stokes equation in the form
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in which only derivatives with respect to r occur, none with re-
spect to x. (In an accelerated coordinate system an inertial force
appears on the right hand side of (2), which may be absorbed
into the pressure.) Since v = 0 at the origin of r, these equa-
tions describe a generalized stagnation point flow. It is of some
interest to note that Kolmogorov had such a partial Lagrangian
system in mind. He considered a coordinate system fixed to a
fluid particle and looked at the velocity of another point rela-
tive to this moving coordinate system. He did not actually write
down (2), but no doubt had this equation in mind.

Outer Equation

Now express these equations in outer variables, using the rms
velocity U as the characteristic velocity, and L = U3/¢ as
length. Define dimensionless outer variables vo = v/U,ro =
r/L, T =tU/L. Scaling with these variables gives

oV,
671_0—'—\/0‘ DoVo: —DoPo—'-R[ngVo 5 Do‘Vo :0 (3)

where R =UL/v and 0o = 0/0r . An outer expansion may be
taken in the form

v=UVo, Vo=Vo1+R Voo2+---. (4)
The first term v 1 satisfies (3) without the viscous term.

Inner Equation

Now rescale variables so that the viscous term is retained as
RL — oo, by defining inner variables

_ - -2
ri =R %0, Vi =R Pvo, Pi=R_ 2P, . (5)
Then (3) may be rewritten as

— ov; —1-B—
RLBH}[a—TI +vi-Ovi = —OP+RIP 02 . (6)
The conditions that the viscous terms be retained as R — o
gives the condition B+ a = —1. Clearly another condition
would be required to complete this, but it is left undetermined.
Equation(6) takes the form (using B = —1—a)

0v;
REOH'la—TI +vi-0Ojvi = —-0iP + Dizvi (7)

which suggests an inner expansion

v=UR %, vi=vi1+RIF i 4. . (8)

Matching

These two asymptotic expansions describe the same function
in different variables. If there is an overlap region where both
are valid the method of matched asymptotic expansions can be
used. Van Dyke’s matching principle states that one should take
the inner expansion of the outer expansion and set that equal to
the outer expansion of the inner expansion. That prescription
was carried out in detail in [3], yielding the functional relation

vo71(r0) = R[l_ale(R[“ro) . (9)
This can be satisfied in the limit R — oo only if
Vo1 =Vrd and vj;=Vrl . (10)

Here g = —(1+a)/a is undetermined (as is a). That is, sub-

stituting these into (9), with r; = R[l/ (1+q)ro satisfies it ex-
actly and any power other than g would give zero or infinity



as R — oo, In these equations V = V(x,t, ) is a dimensionless
random variable; f is a unit vector in the direction of r. The

significant result is
q
v=UvV (E) (11)

in which both V and q are random variables, i.e. they depend
on the realization of the turbulent flow. Longitudinal structure
function ensemble averages at a fixed point x are then given by

Bp:<(v-f)p>:Up<(V-f)p(E)qp> RNCP)

Any further conclusions depend on assumed statistics of V and
g. This is addressed in the following section.

Anomalous Scaling

Statistical Assumptions

For longitudinal velocity components we take the velocity func-
tion in the form

v:voucm)({)q (19)
where
q is a random variable with pdf f(q),
C is a random variable which depends only on g,
Vo is an independent dimensionless random variable,
U is the rms velocity giving dimension to the expression.

The function C(q) will be assumed to be large for smaller q for
reasons which will become apparent below. C can be thought
of as a velocity amplitude function which depends on the expo-
nent q, or perhaps it is better to think of q as dependent on the
amplitude C. If v is interpreted as the azimuthal velocity in an
axially symetric vortex, the vorticity would be given by

q-1
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a singular vortex with amplitude which is greater when the sin-
gularity is greater (smaller g). Therefore C(q) specifies the dis-
tribution of vortex singularities.

Longitudinal structure functions are then given by
w /P
Bp=<VW>=UP<V{> / (E) CPf(g)dg . (15)
0

The idea here is that f(q) has a peak near g = 1/3. If C(q)
is larger on the left of the peak and smaller on the right then
the product CP f shifts the peak to smaller values as p increases,
thus selecting a smaller g in (r/L)9P. If the selected q were 1/3,
(r/L)P/3 results, the K41 result. A smaller value than 1/3 gives
(r/L)% with Zp < 1/3, an anomalous result.

In order to illustrate this specific assumptions for f(q) and C(q)
have to be made: the pdf f(q) is assumed to be log-normal,

1 (In(a/90))?
f(q)= exp( — 16
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and C is assumed to be an inverse power of q
c@=(31)". a7)
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The parameter values have been taken to be qg = .373 and 6 =
.0144 for reasons to be discussed presently and 3 is taken to be
2. In Figure 1, CPf is plotted versus q for various values of p.
The curves have been normalized so that each has an integral of
unity. This quantity is like an effective pdf for g which depends
on the order of the structure function.

Figure 1: Effective pdf, C(q)Pf(q). The dashed line is the ac-
tual log-normal pdf. The curves which peak at smaller g are for
p:3a6595""

The structure function exponents have been computed from
Eq.(15) with these values. For each value of p the integration
was carried out for .02 < r/L < .2. The resulting function of r /L
is close to, but not exactly equal, a power law and was curve-
fit to a power law formula to determine the best exponent. For
p = 3 the result is suposed to be linear, {3 = 1, to agree with the
exact Kolmogorov "4/5” law, Bz = —.8er = —.8U3(r/L). This
was achieved by adjusting the parameter qo. The parameter o
was adjusted to give {g = 1.80, which is close to the observed
experimental value, and is the usual value assumed. The com-
puted values of p are plotted in Figure 2 for p as large as 20.
The She-Leveque curve agrees with experiments out to about
p = 18 and can be regarded here as a surrogate for the exper-
iments. The K62 log-normal result levels off at about p = 16
and decreases after that. The present result agrees well with the
present level of experimenta but finally levels off around p = 30.

It was noticed in doing these computations that the results were
not exactly power laws. The {p exponents depended slightly on
the range of r/L used for the curve fitting. This can be looked at
analytically by letting Ba? be constant as 62 tends to zero. That
is as a2 gets smaller B becomes larger. This is set up by first
writing

2
C(q)Pf(q) = mexp (7Bp|n(q/q0), W>
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The second line follows by completing the square in the first
exponent. Then by a simple change of variables in the integral
(15) may be written

(Ba?p)? ('”(Q/QO)+BGZP)2>
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where, jJumping ahead for notational purposes,

Zp = pdoexp(—PBa?p) . (18)




Now expanding in powers of g, the result is
2)2
o-p) .
Bp=UP <V > ex (L) times
p <Vo > &P

r

(E)Zp<1+(Zplnr/L+Z,2)(Inr/L)Z)oz/z...) (19)

Therefore exact power laws result in the limit as 62 — 0 but
there are logarithmic corrections for small but finite G2.

In the limit p is given by (18). This formula has two adjustable
parameters. We want {3 = 1, which gives qo = exp(3B0?)/3
and we want {g = 2 — I, which gives 2exp(—3B0?) =2 — .
These therefore result in qo = (1/3)(1 —p/2)~! and Bo? =
—(1/3)In(1 —u/2). When these are substituted into (18) the

result is
Zp=(p/3)(1—p/2)PA1 (20)

This is plotted in Figure 2, where it seen to lie slightly below
the computed values.
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Figure 2: Anomalous exponents {p versus p; Black dots,
present computation; Solid straight line is K41, {p = p/3;
Long dashed curve, K62 log-normal model {p = p/3+p(3p —
p?)/18, u = .2; dashed curve is She-Leveque[4], Co=p/9+
2 —2(2/3)P/3; Dot-dashed curve is Eq.(20), Zp = (p/3)(1 —
u/2) PR =2,

Relationship to K62 Theory

The Kolmogorov refined similarity theory (K62) depends on the
hypothesis that the instantaneous dissipation averaged over a
sphere centered at x should replace the mean dissipation in the
K41 theory. The average dissipation over a sphere of radius | is
defined by

3
& = m/KI2\;Dij(x+r)Dij(err)dr (21)

where Djj is the rate of strain tensor. It was shown in [3] that
by using the relative velocity v and the energy equation in the
partial Lagrangian coordinate system that (21) may be written,
as R — oo,

3 1
g :_m_/r‘:l N; Vi <P+ §V|V|)dS . (22)

This relates the average dissipation in the sphere to the flux of
energy into the sphere through the outer surface. Now, using
(13), and the equivalent expression for the other velocity com-
ponents, we get

3

e =A@ (D) ®3)

where Ag is an independent random variable, similar in nature to
Vo, but not simply VO3 because other velocity components occur
in the surface integral. Equation(23) implies & = (Ag/VZ)V3/r
or v ~ (gr)Y/3, which is the Kolmogorov refined hypothesis. It
follows from (23) that

r\t N
<g' >~ ([) with Th=03{an—n , (24)

a result which is due to Kolmogorov[2]. Kolmogorov made a
statistical assumption for €, (log-normal), determined T, and
used (24) to determine {p. In the present work the statistical
assumptions are on v and T, is determined from (24).

Conclusion

A self consistent derivation of turbulent structure function ex-
ponents has been made by the method of matched asymptotic
expansions using the Navier-Stokes equation, to determine the
velocity power law relation (11). This contains two undeter-
mined parameters, an amplitude and a singularity exponent. Be-
cause the equations under cosideration are instantaneous, not
averaged, these could be random variables depending on the re-
alization of the turbulent flow. Assumptions about the statistical
relationship between the amplitude C and the singularity expo-
nent g was made at this stage. The choice made gave results
which agree with experiment, but this choice is not unique and
perhaps a better motivated idea could throw some light on the
nature of the cascade process and give similar results.

One result is a simple expression for the structure function ex-

ponent {p,
_ P By
Z”‘3(1’2> (25)

which satisfies {3 =1 and {g = 2 — 1 and agrees with experi-
ments over a wide range.

These results suggest a number of further researches. It should
be possible to include viscous effects along the lines of the work
done in [3], which should show a slow approach to the limit as
Reynolds number tends to infinity.

Given the velocity difference function (13) and the assumed
statistics it should be possible to study the velocity pdf. This
will require an an additional assumption about the independent
random variable V.
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