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Abstract

Numerical simulations of flow past an elastically-mounted
cylinder at Re = 200 have been performed, and the results di-
rectly compared to simulations of flow past a pure-tone driven
oscillating cylinder at Re = 200. It is shown that the pure-tone
driven oscillation can capture the important VIV characteris-
tics, if the frequency and amplitude of oscillation are closely
matched, for a limited range of U∗. Multi-frequency oscillation
simulations have been performed in areas where the pure-tone
oscillation is not accurate, and while they show a significant
improvement in the lift force history, as yet they provide little
improvement in values of phase.

Nomenclature
A∗ Amplitude ratio, y

D
CE Energy transfer coefficient,

R

T CL.U.dt
CL Lift coefficient, FL

0.5ρU2D
D Cylinder diameter
FL Lift force / unit length
f Oscillation frequency
fN Natural structural frequency
fV Vortex-shedding frequency from a stationary cylinder
m∗ Mass ratio, mCYL

π
4 D2ρL

Re Reynolds number, UD
ν

St Strouhal number, fV D
U

t Time, in seconds
T Period of oscillation
U Free-stream velocity
U∗ Reduced velocity, U

fN D
v Transverse cylinder velocity
y Transverse cylinder displacement
ρ Fluid density
φL Phase between displacement and lift force (deg.)
ζ Damping ratio, c

cCRIT

Introduction

Vortex-induced vibration (VIV) of bluff structures can occur
whenever a bluff body is immersed in a fluid stream. If the fre-
quency of vortex shedding is close to the natural structural fre-
quency of the structure, resonance can occur resulting in large-
scale oscillations and ultimately structural failure.

Circular cylinders are extensively used in the study of bluff-
body fluid dynamics, due to their geometrical simplicity and
common use in engineering applications. Capitalising on these
attributes, many vortex-induced vibration studies are based on
a circular cylinder constrained to vibrate transverse to the free
stream, such as the early investigation of Feng [8], and some
more recent investigations ([11],[9]). While this system is
greatly simplified, it contains the basic elements of coupled
fluid-structure interaction.

In an attempt to better understand these systems, the fluid and
structural systems are often decoupled. The cylinder can be
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Figure 1: Phase vs frequency ratio f / fV for pure-tone driven
oscillation and VIV. � A* = 0.25. • A* = 0.4. N A* = 0.5.
H A* = 0.6. All driven oscillation data from [7] ◦ VIV at high
m*ζ, that produces peak amplitudes of ' 0.55 [9].

driven by some external force at a prescribed amplitude and
frequency of sinusoidal oscillation. An extensive map of wake
modes with varying amplitude and frequency has been created
using this method [16].

While the results gained from driven oscillation experiments
match the wake modes and phase difference between the cylin-
der displacement and lift force well, they do not predict ob-
served levels of energy transfer CE , where CE is defined as the
normalised work done by the fluid on the cylinder over a cycle
of oscillation. This can be written as

CE =
Z

T
CL.dy =

Z

T
CL.v.dt, (1)

where T is a period of oscillation, CL is the lift coefficient and
v is the cylinder velocity transverse to the free stream. If it
is assumed the non-dimensionalised displacement and result-

ing lift force coefficient are pure sinusoids, such that y(t)
D =

A∗ sin(2π f t) and CL(t) = CL sin(2π f t + φL), the energy trans-
fer CE only varies with the phase angle φL [5] such that

CE = πCLA∗ sin(φL), (2)

where A∗ is the normalised cylinder displacement magnitude,
y
D , and φL is the phase between the cylinder displacement and
generated lift force. Inspection of equation 2 shows that CE is
positive whenever 0◦ < φL < 180◦ . This implies that in vortex-
induced vibration φL always lies between these bounds, whereas
during driven oscillation any values of φL are possible. Mea-
surements of φL from VIV studies and driven oscillation studies
are presented in figure 1.

Figure 1 shows that while the general trend of φL is the same
between the VIV and driven oscillation cases, in that there is a



sudden drop in φL around f / fV = 0.9, almost all of the driven
oscillation cases have φL outside the range 0◦ < φL < 180◦ , pre-
dicting VIV should not occur. Only the lower amplitudes, A∗ =
0.25 and A∗ = 0.40, return a phase such that 0◦ < φL < 180◦ at
values of f / fV below that at which the drop in φL occurs. How-
ever, it is known that VIV does occur at the higher A∗ conditions
([11], [2]). It is clear from these results that while pure-tone
driven oscillation captures many of the features of VIV, there
are important flow features present during VIV that it does not
re-create.

Any efforts to predict VIV using driven oscillation results have
met with only mild success. One prediction [14] showed agree-
ment between prediction and results over only a narrow range
of flow speeds, and another [13] predicted an amplitude limit
of A∗

MAX = 1, a limit later exceeded [10]. The prediction of
VIV response from driven oscillation experiments has been in-
vestigated over a period of nearly 30 years, and has so far only
yielded these mildly successful results. It is for this reason that
a more complete driven oscillation model is required.

It is natural that the lower Re two-dimensional case should be
used as a base case, to allow the physics of these flows to be
understood. However, due to the practical difficulties of con-
trolling such a low speed experiment, practically no experimen-
tal investigations of VIV have been made at Re < 200 ([1] is
an exception). However, many numerical results are available
([4], [2]), that compare well to the limited experimental results.
Experimental driven oscillation results at Re < 200 have been
obtained [12], as well as numerical results ([4], [3]). While a
phase change similar to that observed at higher Re has been re-
ported, the phase at these lower Re is that between the cylinder
displacement and vortex shedding, not between the displace-
ment and lift force, and it has been shown by [6] that these two
phases are not always the same. These difficulties mean a direct
comparison between existing VIV and driven oscillation data
has not been made at low Re.

This paper attempts to directly compare numerical VIV results
with driven oscillation results at the same amplitude and fre-
quency. Pure-tone driven oscillation is compared first, and then
multi-harmonic forcing is used where discrepancies between
the VIV and pure-tone driven oscillations exist. The improve-
ment in the lift force history is shown, and the advantages and
drawbacks of using multi-harmonic driven oscillation to model
VIV are discussed.

Computational method

A two-dimensional, spectral-element method based on an ac-
celerated frame of reference was used for this study. A
508 macro-element, non-deforming mesh was employed, with
tensor-product 8th-order Lagrangian interpolation polynomials
employed within each macro-element. Details of the method
used can be found in [15]. A grid resolution study was per-
formed using the stationary cylinder base case as the bench-
mark solution to check convergence. The resolution was altered
by incrementing the order of the interpolation polynomials. No
variation was observed in the value of the Strouhal number, St,
as the polynomial order increased past 8, indicating the grid res-
olution was adequate.

Results

Vortex-Induced Vibrations

A set of simulations of flow past an elastically-mounted cylin-
der was run to determine the VIV response. As in low-Re exper-
iments, three amplitude response branches were observed; the
initial, upper, and trailing branches. The branches are defined in

figure 2a. The upper branch was the largest amplitude response
branch, with amplitudes up to A∗ ' 0.5. The upper branch also
coincided with the range of U∗ over which synchronisation of
the primary response frequency f and the natural structural fre-
quency fN occurred.

The initial branch was characterised by a sharp increase in A∗

with increasing U∗. While the main response frequency f was
close to the vortex shedding frequency of the stationary cylinder
fV , a number of frequency components were present, with the
displacement showing significant beating over time.

The trailing branch occurred at values of U∗ higher than the
synchronisation range. It exhibited low amplitudes of response,
and so the frequency f ' fV . These response results are pre-
sented in figure 2a and b.
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Figure 2: Response of the elastically-mounted cylinder.
(a)Amplitude response. (b) Frequency response. ◦ f / fN ,
- - - fV / fN (c) Phase between lift force and displacement;
◦ Elastically-mounted cylinder, • Pure-tone driven cylinder.

Shown in figure 2c are the phase characteristics of this system.
Phase was defined as the lag that produced the greatest corre-
lation coefficient, obtained by calculating the cross-correlation
between the lift force and displacement. Similar to the high-



Re experimental studies, the phase changed between approx-
imately 0◦ and 180◦ over the range of significant response.
However, unlike the high-Re experiments, which see the phase
change as a sudden jump, this change is an almost linear climb
over the upper branch, with smaller jumps at the initial-upper
and upper-trailing transitions.

Pure-Tone Driven Oscillation

To investigate the effectiveness of modelling VIV with driven
oscillation, pure-tone driven oscillation simulations were per-
formed at the amplitude and frequencies obtained during the
elastically-mounted simulations for a direct comparison. Where
the amplitude of response in the VIV case was not steady, the
maximum amplitude was used.

The phase of these simulations are compared directly to the VIV
phase in figure 2c. It is shown that the phase characteristics of
the two set-ups are very similar over the upper branch, espe-
cially for U∗ > 5.0. Large discrepancies in phase exist through-
out the initial branch, even though the amplitude of oscillation
is only small, O{0.05D}. Interestingly, the phase results from
the pure-tone oscillation match the VIV results closely over the
initial-upper transition, even though many frequency compo-
nents are present during VIV in this region. However, pure-tone
driven oscillation cannot capture all the characteristics of VIV
in this region, due to the high levels of modulation of cylin-
der oscillation. The largest oscillations also occur in this re-
gion, highlighting the importance of the development of multi-
frequency models.

Multi-Frequency Driven Oscillation

Three cases were selected for multi-frequency driven oscillation
testing. A case matching VIV at U∗ = 4.0 was selected as a
large discrepancy in φL existed between the VIV and pure-tone
driven oscillation at these conditions. It was also observed that
two significant frequencies existed in the VIV response of the
cylinder at these conditions, fV and fN .

The second case selected was at U∗ = 4.6. The largest am-
plitude oscillations occurred here, hence the importance of an
accurate model. Significant beating was also evident in the dis-
placement history, indicating the influence of more that one fre-
quency.

The third case selected was at U∗ = 5.0. This case was chosen
because the cylinder natural frequency was effectively equal to
the vortex-shedding frequency from a stationary cylinder, fN =
fV .

The frequencies to include at U∗ = 4.0 and U∗ = 4.6 were de-
duced by performing an FFT on the VIV response data. To
determine the magnitude of each component, all other compo-
nents except for the one of interest were filtered out in the fre-
quency domain, and the filtered data transformed back to the
time domain with an inverse FFT.

For the U∗ = 5.0 case, an FFT was performed on the lift force
data, as the second component of oscillation was too small to be
detected through FFT analysis of the response. The magnitude
of each force component was deduced in the same fashion as
the response components at U∗ = 4.0. The linear equation of
motion, mÿ+ cẏ + ky = F , was then solved for each force com-
ponent, to establish the magnitude of each response component.
The input frequencies and respective displacement amplitudes
are presented in table 1.

The lift force and phase for the multi-frequency cases are pre-
sented in table 2, along with the corresponding VIV and pure-
tone driven oscillation results. The values reported were taken

U∗ f1 A∗
1 f2 A∗

2 f3 A∗
3

4.0 0.206 0.086 0.230 0.014 - -
4.6 0.216 0.302 0.209 0.101 0.221 0.101
5.0 0.200 0.491 0.600 0.003 - -

Table 1: The input parameters for the two multi-frequency
driven oscillation cases.

from the steady-state portion of the response in each case.

Simulation U∗ = 4.0 U∗ = 4.6 U∗ = 5.0
Peak lift coefficient, CLMAX

VIV 1.22 2.476 0.246
Pure-Tone 1.01 0.682 0.266

Multi-Frequency 1.03 2.681 0.208
Phase, φL

VIV 0.70 -0.78 42.50
Pure-Tone 60.61 20.69 22.32

Multi-Frequency 58.93 -0.77 46.25

Table 2: Maximum lift coefficient and phase for the multi-
frequency driven oscillation cases, compared to the correspond-
ing pure-tone and VIV cases. It can be seen that the extra
components added at U∗ = 4.6 have a very significant effect
on CLMAX .
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Figure 3: History of the lift force experienced by the cylinder at
U∗ = 4.6 (a) VIV. (b) Multi-frequency driven oscillation using
the primary and two secondary frequency components of the
VIV case. The agreement is close, but not perfect.

It can be seen from the values in table 2 that the multi-frequency
oscillations have a varying degree of impact compared to pure-
tone oscillations. The largest difference between the multi-
frequency and pure-tone oscillations occurs in the initial branch
and the initial-upper transition region, where extra frequency
components are clearly present during VIV.

For U∗ = 4.0, the value of CLMAX for pure-tone and multi-



frequency oscillation was similar, but the multi-frequency case
displayed significant beating, and was a much more accurate re-
creation of the VIV case. The maximum lift coefficient, CLMAX ,
from the multi-frequency oscillation at U∗ = 4.6, matched the
VIV case closely, and was markedly better than the pure-tone
case. The lift coefficient also showed a constant beating over
time, that was not completely regular. A similar phenomenon
occurred during VIV. This is illustrated in figure 3.

The phase results obtained were encouraging, but more work is
required before any significant conclusions can be drawn from
them. While there seems to be a very close agreement between
the phase results taken from VIV and multi-frequency oscilla-
tion at U∗ = 4.6, they are both negative, which is not expected
for a positive energy transfer. Also, the results at U∗ = 5.0 indi-
cate the extra frequency component makes the phase vary by ap-
proximately 20o. Obtaining phase by cross-correlation is heav-
ily dependent on the accuracy of the frequency of the driving
signal, so a discrepancy of this magnitude is not unexpected.

Conclusions

While pure-tone driven oscillation captures many of the features
of VIV, it has been shown that it misses some significant effects,
especially in the region where the largest oscillations occur. It
is for this reason that a more complete model for VIV has been
investigated, namely one that includes extra frequency compo-
nents.

Specific examples from the initial and upper branches of re-
sponse have been examined. It was discovered that in the ini-
tial branch, at the equivalent of U∗ = 4.0, adding a secondary
frequency component to a driven oscillation changed the maxi-
mum amplitude of the lift force very little. However, it had the
effect of making the lift force history much more similar to the
VIV case it was to model.

However, at U∗ = 4.6, adding extra frequency components had
a significant effect on the maximum lift coefficient obtained,
when compared to the pure-tone oscillation. This lift coefficient
was also much closer to the VIV case lift coefficient. This result
is important as it shows the magnitude of the lift force is not
solely dependent on the peak amplitude of oscillation, but can
also be dependent on the oscillation history.

At U∗ = 5.0 where fN = fV , adding the small extra frequency
component had very little effect on the lift force magnitude.
Over the range 5.0 < U∗ < 6.0, the cylinder oscillation appears
to be a pure-tone oscillation, and it is concluded that a pure-tone
driven oscillation in this region is sufficient for the modelling of
VIV.

Adding the extra component had little effect on the phase angle
in either case, with both still differing when compared to their
corresponding VIV cases, except at U∗ = 4.6. However, the
sensitivity of the response to minor changes in forcing indicate
that to accurately predict the phase difference may require an
exceptionally accurate representation of the forcing signal.

It has been shown that multi-frequency driven oscillation offers
an improvement over pure-tone oscillation in modelling VIV,
especially in the region of largest oscillations. It is envisaged
that further work of this nature will lead to a better understand-
ing of the nature of VIV, and an improved capability to predict
it.
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