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Abstract

The vibration of automotive side rear view mirror is a concern for
vehicles safety. Although the primary causes of mirror vibration
are due to power train, road/tyre interaction and aerodynamic
pressure fluctuations, not many studies have been undertaken on
mirror vibration due to aerodynamic inputs. The primary
objective of this paper is to study the aerodynamic pressures on
mirror surface at various speeds to determine the effects of
aerodynamic inputs on mirror vibration. The mean and
fluctuating pressures were measured and analysed.

Introduction

A significant effort has been made by the automobile and
component manufacturers to reduce aerodynamic drag, noise and
vibration. However, relatively less attention has been drawn to
the refinement of performance of automobile side rear view
mirrors, especially mirror vibration. The primary function of a
side rear view mirror is to provide the driver a clear vision of al
objects to the rear and side of the vehicle. However, there are
several problems associated with it such as image distortion due
to aerodynamically induced and structural vibration,
aerodynamically induced noise (due to cavities and gaps) and
water and soil accommodation on mirror surface due to complex
mirror shapes and airflow around it. An automotive mirror is a
bluff body and causes significant periodic flow separation at the
housing, which produces oscillating aerodynamic forces (due to
hydrodynamic pressure fluctuations) on mirror surface. These
pressure fluctuations not only cause the mirror surface to vibrate
but also generate aerodynamic noise. Due to excessive vibration,
the rear view mirror may not provide a clear image. Thus,
vibrations of the wing mirrors can severely impair the driver's
vision and safety of the vehicle and its occupants. The rear view
mirrors are generally located close to the A- pillar region on the
side window. An intense conical vortex forms on the side
window close to A-pillar due to complex A-pillar geometry and
the presence of side rear view mirror and flow separation from it
makes the airflow even more complex. Although some studies
([3], [4], [5], [6, M) have been undertaken to investigate the
structural input (engine, road/tyre interaction etc) as well as
aerodynamic input to mirror vibration, very little or no study was
undertaken to quantify the aerodynamic input to mirror vibration.
Therefore, the primary objective of thiswork as a part of alarger
study is to measure the aerodynamic pressures (mean and
fluctuating) on mirror surface to understand the aerodynamic
effects on mirror vibration.

Experimental Procedure and Equipment

In order to measure the mean and fluctuating pressures on mirror
surface, a brand new production mirror was used. The glass of
the mirror was replaced with a rigid aluminium plate (2.4 mm
thickness) and the mirror case was slightly modified in order to
hold the aluminium plate. There are 51 holes on the aluminium
plate in a grid pattern. The diameter of the hole was 1 mm. The
space between the two holes was 25 mm horizontally and 13 mm
vertically. The mirror face was pressure tapped with rubber
tubing. The rubber tubing was connected to four pressure sensor

modules, each having 15 channels. All pressure sensor modules
were connected 0 an interface box that provided power and
multiplexes the inputs to the data acquisition system. The
Dynamic Pressure Measuring System (DPM S data acquisition
software provided mean, rms, minimum and maximum pressure
values of each pressure port on mirror. By entering dimensions of
the tubing used, the data were linearised to correct for tubing
response in order to obtain accurate dynamic pressure
measurements. The instrumented mirror was attached with a
quarter model of a current production Ford Falcon and placed in
the working section of RMIT Industrial Wind Tunnel. The
quarter model was used to reduce the blockage ratio and to have
representative vehicle geometry and airflow pattern around the
mirror. The mean and fluctuating pressures were measured a a
range of speeds (60 to 120 km/h with an increment of 20 km/h) at
zero yaw angle. The mirror was tested as standard configuration
first and then modified configuration. The results for the
modified condition are not included in this paper.
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Figure 1: A Schematic of Pressure Measurement Set Up.

Figure 2: Experimental Set Up of the M irror with a Ford Quarter
Model in the Test Section of RMIT Wind Tunnel.

Figure 2 shows the experimental set up in the wind tunnel test
section. In order to simulate real wind condition and A-pillar
geometry, the mirror was attached to the quarter model current
production car as shown in the figure. Experiments were



performed in RMIT University Industrial Wind Tunnel which isa
closed test section, closed return circuit wind-tunnel with a
maximum speed of 145 km/h. The rectangular test section
dimension is 3 m (wide) x 2 m (high) x 9 m (long). More details
about the RMIT Industrial Wind Tunnel can be found in [1, 2].
The tunnel was calibrated before conducting the experiments and
tunnel air speeds were measured via a modified NPL (National

Physical Laboratory) ellipsoidal head Pitot-static tube (located at
the entry of the test section) connected to a MKS Baratron
Pressure sensor. The sampling frequency of each channel was
1250 Hz. It may be noted that the peak energy of fluctuating

pressure on mirror surface is well below 500 Hz (for more
details, refer to [5] and [6, 7). The dynamic response of the
tubing was calibrated in order to minimise the attenuation of

frequency.

Results and Discussion

The mean and fluctuating pressures were converted to non-
dimensional parameters such as mean pressure coefficient (Cp)
and fluctuating pressure coefficient (Cp rms) by dividing the
velocity head (g). The mean Cp and Fluctuating Cp rms were
plotted in 3D and aso in contour. The origin of the plot is
located at the top left hand corner position, eg., Position 1 (see
Figure 3). The xdistance is horizontal and y-distanceis vertically
down as shown in Figure 3. The contour plots for 60, 80, 100 and
120 km/h for the mean and fluctuating pressure coefficients are
shown in Figures 4 to 8, 10-11 and 13. The 3D plots of
fluctuating pressure coefficients (Cp rms) for 100 and 120 km/h
are shown in Figures 7 and 12.

The lowest surface mean pressure was found in the lower part of
the mirror for al speeds except for the 80 km/h speed (see
Figures 4, 6, 8 & 11). The maximum fluctuating pressure was
also measured at the bottom part of the mirror surface at al
speeds tested. The 3D and contour plots clearly show that the
fluctuating pressure is not uniformly distributed on the mirror
surface rather concentrated at the lower central part of the mirror
surface. It is believed to be due to the strong flow separation from
the edge. Generally, the higher the magnitude of the fluctuating
pressure, the greater possibility of generating intermittent force
and aerodynamic noise. With the increase of speed, the affected
area and magnitude of fluctuating pressures increase. The contour
and 3-D plots for the mean pressure show a significant pressure
drop (lowest mean pressure) at the lower right hand corner for all
speeds except at 60 km/h. Further investigation is needed to
clarify this phenomenon but this is thought to be due to the
interaction of the A-pillar vortex. It may be noted that the airflow
around the mirror housing is very complex and strongly
influenced by the A-pillar vortex. It may be mentioned that when
the mean pressure is low, the fluctuating pressure is high,
however, the peak fluctuating pressure does not occur at lowest
mean pressure. The peak fluctuating pressure shifts from the
location of the lowest mean pressure.

A rea mirror glass is generally mounted with the base using a
primary pivot and two auxiliary supports to stabilize the mirror.
The primary pivotal support is located approximately in the
centre of the nirror glass. Therefore, intermittent fluctuating
pressure acting on any part other than pivotal point causes mirror
to vibrate. However, the vibration is neither purely horizontal nor
vertical. The mirror glass vibration is generaly diagona
(torsional) die to the asymmetric fluctuating pressure on the
mirror surface as shown in Figures 5, 7, 9-10 and 12-13.
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Figure 3: Schematic of Data Representation in Relation to Mirror
Geometry and Coordinates.
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Figure 4: Contour Plot of Mean Cp, 60 km/h Speed.
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Figure 5: Contour Plot of Fluctuating Cp rms, 60 km/h Speed.
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Figure 6: Contour Plot of Mean Cp, 80 km/h Speed. Figure 9: Fluctuating Pressure Cp rms Variation on Mirror

Surface, 100 km/h Speed.
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Figure 7: Contour Plot of Fluctuating Cp rms, 80 km/h Speed.
Figure 10: Contour Plot of Fluctuating Cp rms, 100 km/h Speed.
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Figure 8: Contour Plot of Mean Cp, 100 km/h Speed. )
Figure 11: Contour Plot of Mean Cp, 120 km/h Speed.
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Figure12:  Fluctuating Pressure Cp rms Variation on Mirror
Surface, 120 km/h Speed.
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Figure13:  Contour Plot of Fluctuating Cp rms, 120 km/h
Speed.

Spectral Analysis

Power Spectral Density (PSD) was used to document the energy
characteristics of fluctuating pressure signals in the frequency
domain. The fluctuating pressure data from the position on mirror
surface where the maximum fluctuating pressure occurred was
used for PSD analysis and plotted against frequency (see Figure
14). The spectra plot indicates that the fluctuating pressures on
mirror glass are broad band type and most energy is located in
low frequencies.
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Figure14:  Fluctuating Pressure Spectra Variation with
Speeds.

Concluding Remarks

The following conclusions have been made from the work
presented here:

Fluctuating and mean aerodynamic pressures are not
uniformly distributed over an automobile mirror surface.
The highest magnitude of fluctuating pressure can be found
at the central bottom part close to the mirror edge.

The lowest magnitude of mean pressure was noted at bottom
right hand corner of the mirror surface

The pressure fluctuation on mirror glass is broad band type
and most energy islocated in low frequencies (below 50 Hz)
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