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Abstract 
Many instances of differential diffusion, i e, different species 
having different turbulent diffusion coefficients in the same flow, 
can be explained as a finite mixing length effect. That is, in a 
simple mixing length scenario, the turbulent diffusion coefficient 

has the form 21 ( )m
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where, wm is the mixing 

velocity, lm the mixing length and Lc the overall distribution scale 
for a particular species. The first term represents the familiar 
gradient diffusion while the second term becomes important when 
lm/Lc is finite. This second term shows that different species will 
have different diffusion coefficients if they have different overall 
distribution scales. Such different Lcs may come about due to 
different boundary conditions and different intrinsic properties 
(molecular diffusivity, settling velocity etc) for different species.  
For momentum transfer in turbulent oscillatory boundary layers the 
second term is imaginary and explains observed phase leads of 
shear stresses ahead of velocity gradients. 
 
Introduction 
Understanding and modelling natural and industrial processes 
requires in very many cases understanding of turbulent mixing. The 
present paper addresses an aspect of turbulent mixing, which is still 
not well understood namely, differential diffusion. The term 
differential diffusion refers to the observation of different turbulent 
diffusion coefficients K defined by 
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 for different species in a given flow.  
 
In physical oceanography, the species in focus are usually, 
momentum, heat and salt, and differential diffusion of these has 
been argued by Gargett [4] to be an important player in many 
oceanographical processes. Laboratory experiments, e g, Turner 
[13], Nagata & Komori [9] and Jackson & Rehmann [7] have 
shown differential diffusion of heat and salt. Turner [13] and 
Jackson & Rehmann [7] found Kheat>Ksalt, and this has been 
rationalized, by Turner [13] and others, as being due to heat having 
a greater molecular diffusivity than salt. However, Nagata & 
Komori [9] found the opposite, i e Kheat<Ksalt, in experiments which 
had a different geometry. Hence, differential diffusion cannot be 
totally due to differences in molecular diffusivity.  
 
The idea that species with greater molecular diffusivity should 
diffuse more rapidly in turbulence has also been applied to various 
species in flame combustion by Kronenburg & Bilger [8]. Chanson 
([1], [2]) has reported data, which show differential diffusion of 
momentum and bubbles in supercritical free surface flows. 
Differential diffusion of momentum and different sediment sizes 
has been documented for steady flows by Coleman [3] and Graf & 
Cellino [5] and for oscillatory flows by Nielsen [10] p 220. 
 

Nielsen & Teakle [11] reconsidered the simple mixing length 
scenario of Figure 1, where parcels with vertical spacing lm, the 
mixing length, are swapping positions traveling with vertical speed 
wm, the mixing velocity.  
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Figure 1: A simple mixing length scenario involving a single mixing length 
lm and corresponding mixing velocity wm. 
 
The resulting flux density is then 
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which, by the definition (1), gives the diffusion coefficient 
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explanation for differential diffusion as a finite mixing length effect. 
Examples are given below. 
 
Steady Sediment Suspensions  
Consider sediment particles with a range of settling velocities ws 
suspended in the same turbulent flow, and adopting velocity 
fluctuations with the same statistics as those of the fluid. The 
turbulent swapping process in Figure 1 then creates an upward flux 
density given by (2), which in a steady situation is balanced by the 
settling flux –ws c(z)  i e, 
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In general (wm, lm) may be functions of z. However, the essence of 
differential diffusion as a finite mixing length effect is captured by 



 

the simple case of homogeneous turbulence, i e, constant (wm, lm). 
In this case Equation (3) has solutions of the form 
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The corresponding diffusion coefficient is given by 
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This result quantifies differential diffusion for different sand sizes 
in homogeneous turbulence. It is however also in general 
qualitative agreement with data from river flows, where the 
turbulence is not homogeneous, see e g, Coleman [3], Graf & 
Cellino [5]. Indeed, van Rijn [14] suggested the empirical 
correction factor 
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for dealing with the observed differential diffusion of momentum 
(with diffusion coefficient vt) and different sand fractions in natural 
rivers. Van Rijn’s formula is seen to have the same dependence 
upon ws/wm ~ ws/u*  as the finite mixing length result (6). 
 
We acknowledge that the example, which leads to (6), does not 
deal with all details, i e, in a natural scenario, particles with 
different settling velocities, and hence different response times ws/g, 
do not get identical turbulent velocity statistics (~ same wm). 
However, this is usually totally overshadowed by the finite-mixing-
length–effect. That is, the two act in opposite directions, but all the 
experimental data show Ks  to be an increasing function of ws as 
predicted by the finite-mixing-length model. 
 
The importance of boundary conditions 
The above example, of sediment particles with different ws but 
statistically identical velocity fluctuations in homogeneous 
turbulence, can also be used to illustrate the importance of 
boundary conditions for the occurrence of differential diffusion. 
Consider point injections of such sediments into an infinite, 
homogeneous turbulence field, Figure 2. Each sediment type will 
then form a cloud, which sinks at an average rate of ws. At the same 
time, each cloud grows in accordance with the theory of Taylor 
[12], i e, the vertical extent σz of each cloud grows in accordance 
with  
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where ρww is the autocorrelation function for w(t). This standard 
deviation, or cloud size, is independent of ws under the assumption 
of identical fluctuation statistics. There is thus no differential 
diffusion in Taylor’s infinite, unsteady scenario. Differential 
diffusion only occurs when a boundary condition, e g, c(0,t) ≡ Co, 
as in the example above, is enforced. 
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Figure 2: Successive concentration profiles c(z,t), after 5, 10 and 20 seconds 
of particles with ws=1cm/s (♦), and 3cm/s (�) respectively settling with 
statistically identical velocity fluctuations after being released as point 
injections at z=1m at t=0. At any time the concentration profiles have the 
same shape, irrespective of ws. 
 
Finite Mixing Length Effects on Eddy Viscosities 
Steady current profiles, e g, the log-profile can be understood in 
terms of a mixing length model where only the first term (the 
gradient term) of (2) is retained. That is however not possible for 
oscillatory turbulent flows.  The most obvious feature of oscillatory 
turbulent boundary layers, which requires finite mixing length 
terms, is the observed phase lead of local shear stresses ahead of 
the local velocity gradients, cf Figure 3. 
 
In a formalism with real-valued eddy viscosities, shear stresses 

),( tzτ being out of phase with the local velocity gradients ∂u/∂z 

leads, through the usual definition, 
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variable [-∞; ∞] eddy viscosities. Alternatively one can (for the 
simple harmonic case) use constant, but complex-valued eddy 
viscosities with argument equal to the phase lead of  

),( tzτ relative to ∂u/∂z. The complex-valued eddy viscosities are 
however just nominal and rather ad hoc tools. In the following, we 
make the case that the phase lead of ),( tzτ relative to ∂u/∂z is in 
fact a finite-mixing length effect. In this case the finite mixing 
length term in (2) is imaginary corresponding to the observed phase 
shift between ),( tzτ relative to ∂u/∂z. 
 



 

Figure 3: Velocity gradient and shear stress in a turbulent oscillatory 
boundary layer. The stress leads the velocity gradient. Measurements by 
Jonsson & Carlsen [6]. 
 
To show this we first note that, in the simple mixing length 
scenario in Figure 1 the upward flux of x-momentum (= -τ)  is 
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The velocity in a simple harmonic oscillatory boundary layer flow 
is often expressed in terms of the free stream velocity u∞(t) and the 
complex velocity defect function D(z) defined by  
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in terms of which the shear stress is 
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In combination with (9) this leads to the finite mixing length 
momentum equation 
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This equation must, with the relevant expressions for lm(z) and wm(z) 
be solved with the boundary conditions  D(0) = 1 and D(∞) = 0. By 
letting lm  tend to zero, one sees that Equation (12) is the finite-
mixing-length equivalent to the laminar 

  Di
dz

Ddv ω=
2

2
 (13) 

which, with the above mentioned boundary conditions has the 
solution 
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To see the essence of the finite mixing length effect on the 
momentum flux (9) and hence on vt it suffices to consider the 
simplest scenario: homogeneous turbulence with constant (lm,wm). 
In this case, the momentum equation (12) has an analogous solution 
to the “lm→0 solution” (14). 
 
Inserting a solution of this form, i e,  D = eαz, into (12) leads to the 
following expression for α 
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This expression for the exponent shows by comparison with the 
laminar solution (14) that the eddy viscosity is given by  
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where the second, imaginary term shows that the phase lead of τ 
ahead of ∂u/∂z develops as  lm  becomes large compared with the 
vertical scale Lω= wm/ω ~ u*/ω defined by the mixing (friction) 
velocity and the wave frequency. For very slow oscillations the 
second term vanishes and the classical von Karman-Prandtl mixing 
length theory suffices. 
 
Differential Diffusion at an Interface 
Consider mixing at an interface as in Figure 4. The density 
variation may be due to temperature, salinity or suspended 
sediment. Horizontal fluid momentum may vary in a similar 
fashion at the interface. 

 Figure 4: Assumed density distribution at an interface where turbulent 
mixing can be described by Equation (2) in terms of a single mixing length 
lm and a single mixing velocity wm.  
 
Consider density as an example and, for simplicity, assume that the 
density profile is given by 
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In this situation the mixing flux corresponding to the mixing length  
lm and the mixing velocity wm is 
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which for  z<<L  is simplified to 
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The second term, the finite mixing length term, thus indicates 
greater diffusion coefficients for species with greater L. Equation 
(19) could thus explain the observed differential diffusion of salt 
and temperature with Ks< Kt  if the mixing length  lm is a finite 
fraction of the distribution scales and if the scale for the 
temperature Lt is greater than that of salt, Ls. In this case a positive 
feed back loop exists: Greater L ⇒ greater K ⇒ greater L … 



 

Jackson & Rehmann [7] found that the differentiation disappears 
when the mixing gets very vigorous. That could also be explained 
by (19). That is, if the mixing is enhanced essentially by increasing  
wm while lm  is more or less fixed. Both of  Lt and Ls will then 
increase compared with  lm  and the second term in the bracket (the 
finite mixing length effect) becomes insignificant. 
 
Conclusions 
In classical mixing length models, including those of Prandtl and 
von Karman, only the first term, the gradient term, is maintained in 
the Taylor expansion of the turbulent mixing flux: 
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This leads to K=wmlm for all species in a given flow. In other words, 
differential diffusion is not anticipated by these models, at least not 
for species with the same wm, lm. On the other hand, differential 
diffusion is quite commonly observed even for species between 
which no significant differences in wm, lm are expected. 
 
We have shown that keeping just one more term yields 
explanations for a number of conundrums related to turbulent 
mixing. That is, the second term in the mixing flux, which becomes 
important when lm/Lc is finite, can explain that different sediment 
sizes suspended in the same flow display K-values which increase 
with increasing settling velocity. 
 
For the mixing of momentum, salt and heat at an interface, 
Equation (2) also holds a possible explanation for differential 
diffusion. That is, if one species, for some reason, has a greater L, 
the finite mixing length terms will make it diffuse faster and thus 
provide a positive feedback loop for this difference. 
 
While the classical theory of Taylor [12] does include finite mixing 
length effects in a Lagrangian sense, these are not expressed in 
terms of differential diffusion until steady boundary conditions are 
enforced. 
 
For the transfer of momentum in turbulent oscillatory boundary 
layers the finite mixing length term is imaginary and explains 
observed phase leads of shear stresses ahead of velocity gradients. 
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