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Abstract

The approximately homogeneous, isotropic turbulence (HIT)
produced by three grids with different geometries was measured
over the range 30 ≤ x/M ≤ 80. The scale-by-scale budget of
decaying grid turbulence obtained from the transport equation

for
〈
(δq)2

〉
is used to study the effect of grid geometry in an

attempt to quantify the influence of initial conditions of the tur-
bulence decay. Although Rλ is too small for a scaling range
to exist, the initial conditions show negligible effect on scales
smaller than λ. The solidity of the grid influences only the very
large scales. The shape of the grid elements can significantly
affect the overall shape of the inhomogeneous term in the trans-

port equation for
〈
(δq)2

〉
.

Introduction

Theoretical studies of decaying homogeneous, isotropic turbu-
lence (HIT) have classically eliminated initial conditions from
the problem with the assumption of infinite Reynolds number
and invoking Kolmogorov’s theory [12], although early presen-
tations of the theory included a discussion of their possible ef-
fect on the decay [5]. Initial condition effects remained absent
from HIT theory, which is the basis of most modern turbulence
models, despite experimental and, more recently, DNS results
that supported the importance of initial conditions via the unex-
plained wide scatter in m, the decay exponent [8, 10, 16].

Theoretical work by George [9], herein referred to as G92, ar-
gues for the importance of initial conditions and derives a self-
similar theory for HIT that includes the effect of initial con-
ditions and applies at finite Reynolds number. Although the
derivation of the theory is strictly correct and some of its parts
are supported by experimental and numerical data [2, 3, 17],
certain aspects of the theory are argued to have no physical ba-
sis [9, 15]. G92 expects that the decay exponent will change
with initial conditions. However, the analysis of Speziale and
Bernard [15], referred herein as SB, predicts a universal decay
that is reached asymptotically with time. Their analysis shows
that the scatter in previously reported m could be due to some
experimental data having been sampled in the transition zone
prior to the universal decay state.

Alternatively, Mohamed and LaRue [13] suggested the scatter
could be due to inconsistencies in the way different authors fit-
ted the power-law to their respective measurements. These au-
thors then proposed a procedure to estimate the parameters of
the power-law, which they argued to be consistent and rigorous.
When this was applied to their and other previously published
data, they found a reduction in the scatter that pointed to a weak
or non-existent dependence on initial conditions. However, the
decay exponent thus obtained, m = −1.3, is significantly differ-
ent from the value −1 predicted by classical theories [5, 10].

As highlighted by this discussion of references [9, 13, 15], there
remains much confusion and controversy regarding the actual
cause of the scatter reported for m. Furthermore, George et
al. [10] and Mohamed and LaRue [13] showed that the esti-

mation of m includes sizable uncertainties, which suggests that
this variable may not be sensitive enough to show the effects of
initial conditions on decaying HIT clearly. The difficulty with
the study of initial conditions is that neither the initial condi-
tions themselves nor their effects are easily quantifiable. This is
particularly true in experimental work where the initial energy
distribution over the turbulent scales can hardly be controlled or
measured. This also makes comparisons between experimental
and numerical results very difficult. It is the purpose of this
paper to show that the scale-by-scale budget of the turbulence
generated by three grids of different geometry can be used to
quantify in a non-ambiguous manner the effect that initial con-
ditions have on the approximately homogeneous, isotropic tur-
bulence generated by these grids.

Background

Grid turbulence provides a good approximation of decaying
HIT and offers a direct measure of the mean dissipation rate
from the turbulence kinetic energy decay, viz.

〈ε〉d = −U
2

d
〈
q2

〉
dx

. (1)

Danaila et al. [7] revisited the classical Kolmogorov “four-fifths
law” [11] which relates the second- and third-order structure
functions, viz.

−
〈
(δu)3

〉
+6ν

d
dr

〈
(δu)2

〉
=

4
5
〈ε〉 r , (2)

where δu ≡ u(x+ r)− u(x) is the difference in streamwise ve-
locity fluctuations between two points separated by a distance
r along the streamwise directions, 〈ε〉 is the mean kinetic en-
ergy dissipation rate and 〈〉 denote an assemble average. It is
well known that equation (2) is only balanced for very small
separations, typically of the order of a few Kolmogorov lengths,
η ≡ ν3/4 〈ε〉−1/4, for the small and intermediate Reynolds num-
bers obtained in most experiments. In an attempt to study the
effect of large-scale inhomogeneities on the small scales of tur-
bulence, Danaila et al. [7] obtained a transport equation for〈
(δq)2

〉
from the Navier-Stokes equation for decaying grid tur-

bulence, viz.

−
〈
(δu) (δq)2

〉
+2ν

d
dr

〈
(δq)2

〉
− U

r2

∫ r

0
s2 ∂

∂x

〈
(δq)2

〉
ds =

4
3
〈ε〉 r ,

(3)

where
〈
(δq)2

〉
≡

〈
(δu)2

〉
+

〈
(δv)2

〉
+

〈
(δw)2

〉
and s is a

dummy variable. Equation (3) is an extension of equation (2)
with the addition of an inhomogeneity term. Also, the for-
mer takes into account the three velocity components, instead
of only u in equation (2). It is important to note here that the
inhomogeneous term in equation (3) is a consequence of the
streamwise decay of the turbulence and that, for box turbulence



Figure 1: One-component vorticity probe. ∆y � 1.0 mm, ∆z �
1.3 mm, β1 �β2 � 45o. All wires have a diameter of 2.5 µm and
were etched from Wollaston (Pt-10% Rh) material to a length of
approximately 0.5 mm.

where there is no mean flow, it would take the form of a time-
wise decay [14]. An important feature of equation (3) is that it
can be used as a scale-by-scale budget of the turbulence [1, 6].

Following G92, Antonia et al. [3] derived the conditions for
which equation 3 satisfied similarity. Their analysis yielded
the following self-similar forms for the second- and third-order
structure functions,〈

(δq)2
〉

=
〈

q2
〉

f
( r

λ

)
(4)

and

−
〈
(δu) (δq)2

〉
=

[〈
q2〉3/2

31/2Rλ

]
g
( r

λ

)
, (5)

respectively, where λ is the Taylor microscale, defined here as

λ2 = 5ν
〈
q2〉
〈ε〉d

, (6)

and Rλ is taken as

Rλ =

〈
q2〉1/2 λ
31/2ν

. (7)

Under these conditions, f and g are independent of x and the
turbulence decays following a power-law of the form〈

q2
〉

= a
( x

M
− xo

M

)m
, (8)

where xo/M is the virtual origin, m is the power-law exponent
and a is a constant of proportionality. Detailed derivation and
discussion of this theory can be found in [3].

When equations (1), (4), (5) and (8) were applied to equa-
tion (3), Antonia et al. [3] obtained a self-similar form for the
scale-by-scale budget, viz.

g+2 f ′ −
[

5Γ1

m

( r
λ

)−2−10Γ2

( r
λ

)−2
]

=
20
3

( r
λ

)
, (9)

where Γ1 and Γ2 are given by

Γ1 ≡
∫ r/λ

0

( s
λ

)3
f ′ d

( s
λ

)
(10)

Γ2 ≡
∫ r/λ

0

( s
λ

)2
f d

( s
λ

)
. (11)

Equation (9) can be written symbolically as A + B + [INH] =
C, where INH represents the total streamwise inhomogeneous
term.
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Figure 2: Streamwise variation of
〈
q2

〉
behind the three grids

(Sq35, �; Rd35, ©; Rd44, ♦) compared to the fitted power-
laws (fitting parameters summarized in table 1).

Experimental Details

The measurements presented here were made with a one-
component vorticity probe, which consists of parallel wires and
a X-wire. Figure 1 gives a schematic of the probe with typical
dimensions. A vorticity probe was used to obtain more com-
plete measurements of the turbulence behind the grids. Vorticity
results are however not presented here. The wires were operated
with in-house constant-temperature circuits at an overheat ratio
of 0.5. The signals were then amplified and low-pass filtered at a
cut-off frequency of fc, which varied depending on the grid and
x/M. fc was selected to correspond to the onset of electronic
noise and was of the order of f k ≡U/2πη, the Kolmogorov fre-
quency. The signals were sampled at a frequency f s ≥ 2 fc and
digitized with a 16 bit A/D converter for a duration of 60 to 300
seconds.

Three biplane grids were used, all with the same mesh size
M = 24.76 mm. The geometry of the grids was varied by chang-
ing the shape of the bars cross-section and the solidity of the
grid. The first grid, Sq35, was made with square bars and so-
lidity σ ≡ d/M (2−d/M) = 0.35. The other two grids, Rd35
and Rd44, were both manufactured with round rods but with
σ = 0.35 and σ = 0.44, respectively. The grids were placed
downstream of the contraction (area ratio of 9:1) of an open-
circuit wind tunnel. The length of the working section was 2.4
m and its cross-sectional area at the contraction was 350 mm
× 350 mm (the floor of the tunnel was slightly inclined to pro-
vide zero pressure gradient). The probe was traversed along the
centerline of the working section. Measurements were made
between x/M = 30 and x/M = 80 in steps of one mesh length
with a mean velocity U = 6.4 m/s (RM = UM/ν ≈ 10,400) for
all three grids. The mean turbulent statistics obtained with the
vorticity probe were corrected for spatial resolution following
the method described in Zhu and Antonia [18]. The flow was
assumed to be axisymmetric so that v and w statistics are taken
to be equal. The measurements of w and uw correlations were
taken from the X-wire, while the average of the two single wires
was used for u.

Results

The decay exponent for each grid was obtained here by fitting
equation (8) in the range 40 ≤ x/M ≤ 80 with the MatLab rou-
tine NLINFIT. Initial estimates for a and m were obtained by as-
suming xo/M = 0 and applying a linear regression to log

(〈
q2〉)
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Figure 3: Second-order turbulent energy structure function for
Rd44. x/M = 30, −−−−; x/M = 40, −−−; x/M = 50, − ·−;
x/M = 60, · · · · · · ; x/M = 70, −−�−−−�−−; x/M = 80, −−◦−−◦−−.

λ Lq η
Grid m

xo
M

〈u2〉
〈w2〉 Rλ mm mm mm

Sq35 -1.13 3 1.48 41.1 5.36 13.7 0.42
Rd35 -1.31 0 1.40 30.0 5.23 10.2 0.48
Rd44 -1.28 0 1.39 33.4 5.32 10.8 0.47

Table 1: Decay law parameters and other basic turbulence char-
acteristics obtained at x/M = 60 for the three grids.

vs. log(x/M). The power-laws obtained are compared graph-
ically in figure 2 to the measured

〈
q2

〉
. Figure 3 presents〈

(δq)2
〉

normalized according to G92 for Rd44 and shows

that similarity is only reached approximately for x/M ≥ 40.
The plots for Sq35 and Rd35 lead to the same conclusions
and are not shown here. The three criteria suggested by Mo-
hamed and LaRue [13] were met before x/M = 40; namely S u =〈
u3

〉
/
〈
u2

〉3/2
was zero, S∂u/∂x =

〈
(∂u/∂x)3

〉
/
〈
(∂u/∂x)2

〉3/2

was constant and 〈ε〉 iso ≡ 15ν
〈
(∂u/∂x)2

〉
was equal to 〈ε〉d

within 10%. Note here that the results of the scale-by-scale
budgets presented are insensitive to errors in m and therefore
the method of determining m used was deemed sufficient for
the purposes of this paper.

We shall concentrate our analysis to the measurements obtained
at x/M = 60 since the results do not change significantly with
location for 40≤ x/M ≤ 80, due to the quasi-self-similar turbu-
lence decay. The location x/M = 60 presents a good compro-
mise between probe resolution, which improves with increasing
x/M, the degradation of the signal-to-noise ratio with x/M and
increasing confinement of the turbulence due to the finite width
of the tunnel. A few basic quantities measured at this location
are summarized in table 1. Note that the integral length scale L q
is defined here as

Lq =
1〈
q2

〉 ∫ ro

0
Bq,q (r)dr , (12)

where Bq,q is calculated here as

Bq,q = 〈q(x)q(x+ r)〉 = 〈u(x)u(x+ r)〉+2〈w(x)w(x+ r)〉
(13)

and ro is the first zero crossing of Bq,q.

Figure 4 compares the function f (r/λ) measured behind each
grid at x/M = 60. The ratio W/λ, where W is the width of
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Figure 4: Second-order turbulent energy structure function
measured at x/M = 60 behind three grid geometries: Sq35, �;
Rd35, ©; Rd44, ♦. Indicated are the ratios W/λ, which is ap-
proximately equal for the three grids at x/M = 60, and Lq/λ,
which is roughly equal for Rd35 and Rd44.

the tunnel, is included to provide an indication of the values
of r/λ that may be affected by the size of the tunnel. For
r/λ < 1, the normalized structure functions are nearly equal for
the three grids. In the range 1 ≤ r/λ ≤ 7, the difference be-
tween Rd35 and Rd44 is within 1.4%, which is the estimated
statistical uncertainty, while Sq35 shows a clear departure from
the two round-rod grids by r/λ = 1. Figure 4 establishes that
f (r/λ) for Sq35 approaches the asymptotic value of 2 mono-
tonically from below. This is contrasted to Rd35 and Rd44 for
which f (r/λ) overshoots the asymptote before it settles to 2 as
r/λ → ∞. This overshoot for the round-rod grids suggests that
the large turbulent scales behind these two grids are more peri-
odic in nature than those for Sq35. The stronger overshoot and
oscillations at large separations outside the measurement scatter
for Rd44 imply that the periodic structures of Rd44 are stronger
than for Rd35.

The scale-by-scale budgets compensated with (r/λ) for the
three grids are compared in figure 5. As shown, the left-side
of equation (9) equals 20/3 to ±10% at all separations. In the
range r/λ < 1, the balance is very sensitive to inaccuracies in
the estimate of λ, while at larger separations, the main uncer-
tainty comes from the statistical convergence of g(r/λ). For the
current experiments there is no separation between the scales
responsible for the dissipation of turbulence and the scales af-
fected by INH, which is not surprising given the low Rλ. It is
also clear that INH does not differ significantly for the three
grids up to about r/λ = 1. While the inhomogeneous term for
Sq35 deviates from that of the two round-rod grids for r/λ ≥ 1,
there is little difference between Rd35 and Rd44 until r/λ > 8.
These observations indicate that the three grid geometries stud-
ied here have little effect on the turbulent scales ranging from
η to λ. However, the shape of the bar cross-section show an
influence on scales as small as λ. The solidity of the round-rod
grids appears to impact only on scales much larger than L q.

Concluding Comments

The effect of grid geometry was studied using the turbulent en-
ergy structure function and the related scale-by-scale budget.
The small Reynolds numbers of the current experiment prohib-
ited the formation of a proper separation between the scales re-
sponsible for the turbulence dissipation and those affected by
the inhomogeneity of the flow. Despite the low Rλ, the three
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Figure 5: Comparison between the energy budget behind
the three grids (Sq35, �; Rd35, ©; Rd44, ♦) at x/M =
60. A(r/λ)−1, —; B(r/λ)−1, −−−; INH(r/λ)−1, − · −;
(A+B+ INH)(r/λ)−1, · · · · · · . The thick horizontal line is at
20/3 and the horizontal dotted lines represent ±10%. Also in-
dicated for reference are the ratios W/λ and Lq/λ.

different grid geometries studied here had little effect on scales
ranging between η and λ. Overall, the shape of the bars exhib-
ited a stronger influence on the energy containing scales than
the grid solidity. This latter parameter was only important for
r/λ ≥ 8 and mainly affected the periodicity of large organized
structures. The questions of how the grid geometry produces
different turbulent states and how these affect important param-
eters, such as the power-law energy decay exponent, remain
however undetermined.

A detailed study of the turbulence from very close to the grid up
to the quasi-self-similar region is required to answer the first of
these questions. The complexity of the flow field and reduced
scales of the turbulence near the grid make hot-wire measure-
ments more difficult and uncertain. Other methods of flow mea-
surements, such as PIV [4], can however be employed to cor-
roborate and complement hot-wire data.

A more detailed understanding of the effect of grid geometry on
approximately homogeneous, isotropic turbulence is the subject
of continued work. The scale-by-scale budget for grid turbu-
lence, which was shown to capture quantitatively the effect the
grid-geometry in this paper, should prove to be an invaluable
tool in the study of decaying HIT.
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