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Abstract

Results from a particle image velocimetry (P1V) investigation of
grid turbulence were recently compared with results from a di-
rect numerical simulation (DNS) of homogeneous isotropic tur-
bulence [5]. The comparison highlighted the difficulty of speci-
fying an adequate spatial domain for numerical and experimen-
tal studies so that an accurate determination of integral length
is obtained. Integral length is determined from the autocorrela-
tion function, but the autocorrelation function is incorrect if the
spatial domain is not sufficiently large. In general, the spatial
domain in an experimental or numerical investigation is limited
by restrictions on the experimental equipment or computational
resources. Using the available spatial domain, an autocorrela-
tion function is obtained from which the integral length is deter-
mined. The accuracy of the integral length is usually evaluated
by comparing it to the spatial domain. If the spatial domain is
sufficiently larger than the integral length, the integral length is
judged to be accurate. However, how many times larger than
the integral length does the spatial domain need to be?

Introduction

Defining a length or time period that is characteristic of the
largest scales in a turbulent flow is of importance both in defin-
ing a suitable area or volume for experimental and numerical
investigations, and also to understanding the process of energy
production and dissipation in the flow. In some cases a suitable
scale can be defined by the physical constraints of the flow do-
main. For example, in pipe flow the diameter of the pipe is of
the order of the largest eddies in the flow, and the ratio of the
pipe diameter to mean velocity along the pipe is a good esti-
mate of the time period required to describe the flow. In other
cases where the largest scale is not obvious from the flow ge-
ometry, an integral scale can be defined that is a measure of the
longest connection or correlation distance between two points
in the flow that are separated either by distance or time [3]. In
this paper, we determine the integral length scale of the velocity
defined by:
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where the double-i subscript in Rji(r,t) indicates the
autocorrelation function (i.e. correlation of a velocity compo-
nent with itself) defined by:

(Ui (Xi, Ui (xi +1,t))
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and r is the distance between two points in the flow. The au-

tocorrelation function is longitudinal if r is parallel to u;, and

transverse if r is perpendicular to uj, where u; is the root-mean-
square velocity in the i-direction.

Rii(r) = 2

Results

Comparison of Experimental and Numerical Data

The experimental data cited in this paper is from a PIV inves-
tigation of grid turbulence. Details of the experiment can be

found in [5]. The experimental results are compared to numeri-
cal results from DNS of homogeneous isotropic turbulence. De-
tails of the DNS can be found in [6].

In the case of the PIV data, the size of the spatial domain de-
pended on the image acquisition equipment that was available.
There was a balance between obtaining a sufficiently large ex-
perimental domain and accurately resolving the particles in the
acquired images. The spatial domain was of size 3\ where A is
the Taylor microscale determined from:
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where uy is the root-mean-square of the stream-wise component
of velocity, and %% indicates the streamwise gradient of the

streamwise velocity. For the DNS data the Taylor microscale is
calculated from:
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The Kinetic energy dissipation (g) is determined spectrally and
v is the kinematic viscosity. The side-length of the three-
dimensional simulation volume was greater than 7A, although
the velocity field could be restricted to any spatial domain, in-
cluding 3A.

A=

Figure 1 compares the atocorrelation function obtained from the
PIV data to that obtained from the DNS data using the entire
available domain, and also restricting the domain to different
values, including 3A. Both the longitudinal and transverse au-
tocorrelation functions are shown. For the DNS data it would
be expected that, once the spatial domain is large enough, there
would be little change in the autocorrelation function when the
spatial domain is increased. In the longitudinal case there is a
significant difference between the autocorrelation function for a
spatial domain of 4.5\ and that for 8\, so it appears that a spa-
tial domain of 4.5\ is not sufficient to accurately determine the
longitudinal integral length in this case. In the transverse case
the autocorrelation functions found for a spatial domain of 4.5\
and 8A are quite similar, but that for 3A is significantly differ-
ent, so a spatial domain of 3\ appears to be insufficient for an
accurate determination of transverse integral length in this case.

It was noted in [5] that the autocorrelation functions obtained
from the PIV data were different from previous experimental
and numerical results. It appears from Figure 1 that the limited
spatial domain of the PIV investigation may account for much
of the deviation from past results. Also shown in 1 is the the-
oretical autocorrelation functions obtained by Townsend [8] for
isotropic turbulence with uniform size structures and turbulence
with a wide range of structure sizes.

Velocity Integral Length

The determination of the integral scale from equation (1) is not
straight-forward [1]. The form of the autocorrelation function
is such that it generally decreases rapidly to its first zero cross-
ing, after which it may become negative and proceed to oscillate
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Figure 1: Longitudinal and transverse velocity autocorrelation
functions obtained from DNS data by progressively restricting
the spatial domain (Re), = 26) compared to experimental data
obtained using a spatial domain of 3\ (Re) = 23). Top: longi-
tudinal autocorrelation; bottom: transverse autocorrelation.

about zero. While equation (1) involves the determination of the
integral over an infinite domain, the domain of the autocorrela-
tion function from experimental or numerical data is finite, and
there is some uncertainty on how best to define the integration
domain. For example, Tritton [9] described how, in the case of
transverse autocorrelations, one might observe negative correla-
tions, and further that the shape of the autocorrelation function
following the first zero crossing may contain information about
the structure of the turbulence. On the other hand, Yaglom [10]
found that while the oscillations in the autocorrelation function
may reflect the turbulence structure, they can also be described
as “spurious” if a small number of data points are used to de-
termine the autocorrelation function, and the error exceeds the
quantity being estimated.

The integration domain for the determination of the integral
length as a representative length scale of the turbulence can be
specified in a number of ways. In this study we investigate the
following four methods:

1. integrate over the entire available domain;

2. if the autocorrelation function has a negative region, inte-
grate only up to the value where the autocorrelation func-
tion is a minimum [9];

3. integrate only up to the first zero-crossing [4]; or

4. integrate only up to the value where the autocorrelation
function falls to 1/e [9].

To investigate the effect of the spatial domain on the integral
length determination, each of the four integration domains listed
were used to determine the integral length from the longitudi-
nal autocorrelation function of velocity. The spatial domain of
the velocity field was progressively restricted. The results are
shown in Figure 2. Note that measurements are with respect to
a DNS grid size of 21, chosen so that wavenumbers are integer
values.
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Figure 2: Integral length (A) determined from DNS data (Re), =
26) using four different integration domains and progressively
restricting the spatial domain (A).

It is expected that the effect on integral length of increasing the
spatial domain would be to increase integral length up to a limit
where further increasing the spatial domain has little or no ef-
fect, at which point the integral length is judged to be accurate.
From Figure 2 this appears to be what happens for three of the
four integration domains, but not for the case where the inte-
gration domain includes all the available data (i.e. integrating
from x = 0 t0 X = Xmax). The reason for this can be seen by
considering Figure 3 which shows the autocorrelation function
obtained for the entire available spatial domain. The boundary
conditions for the DNS are periodic, and the effect of this can be
seen in the form of the autocorrelation function, with very high
values (close to 1) being obtained when the distance between
correlated points is close to the side length of the grid. While
this is a true representation of the autocorrelation function from
the DNS data, it is not a fair representation for homogeneous
isotropic turbulence, where the autocorrelation function would
be expected to decay to zero within a sufficiently large spatial
domain. It also leads to an erroneous measure of integral length
if all the data is used in the evaluation, and that error can be seen
in the continued increase in the integral length observed using
this integration domain in Figure 2. The effect of the periodic
boundary condition can also be seen in the fact that the integral
length does not follow a gently increasing trend as the spatial
domain is increased up to approximately 3, but increases signif-
icantly then reduces. For these reasons this integration domain
is not used in the determination of integral length in the remain-
der of this study.
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Figure 3: Longitudinal autocorrelation function obtained using
the entire spatial domain available (Re) = 26).

Of the three remaining integration domains, two of the methods
give similar results (integration from zero to x at y = yyin and
from zero to x aty = 1/e). The first of these methods (zero to x
at y = ymin) has a disadvantage in that it often cannot be evalu-
ated. If the autocorrelation function does not become negative
and does not have a minimum value, the integration domain
cannot be specified. The second of these two methods (from
zero to x at y = 1/e) discounts a large portion of the autocor-
relation function and is expected to underestimate the integral
length. For the remainder of the results presented in this study,
the integration domain used in the evaluation of integral length
is from x = 0 to the first zero crossing of the autocorrelation
function.

Having selected an integration domain, the question is: what is
the minimum spatial domain that will ensure an accurate deter-
mination of integral length? In order to help answer this ques-
tion, Figure 4 compares the integral length determined from the
longitudinal autocorrelation function found for a range of Rey
using a range of spatial domains. For all the Re, shown in Fig-
ure 4 it appears that increasing the spatial domain A above ~ 3.2
only has a small effect on the evaluation of A. However, the
number of integral lengths in the spatial domain for this deter-
mination is different for each of the four Reynolds numbers, the
spatial domain being between ~ 4 and ~ 5.5 times greater than
the integral length (A). It is also noted that in one case an under-
estimate of integral length appears to be obtained, even though
the spatial domain is approximately six times greater than the
integral length. It appears from these results that the number of
integral lengths required in the spatial domain in order to obtain
the correct integral length may depend on the Reynolds number
of the flow under investigation. A spatial domain greater than
six times the integral length appears to be just sufficient for the
worst case represented in Figure 4.

Vorticity Integral Length

The results in the previous section indicate that a spatial domain
equivalent to at least six integral lengths is required for determi-
nation of an accurate integral length from the longitudinal ve-
locity autocorrelation function for the DNS results shown. Fur-
ther investigations were undertaken to determine what spatial
domain is required when determining the integral length scale
for the vorticity.
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Figure 4: Integral length calculated from the longitudinal auto-
correlation function over a range of spatial domains (A). Also
shown is the ratio of the spatial domain to integral length (A/A).
Results are shown for a range of Re).Hollow symbols indicate
A, filled symbols indicate A/A.

Using the same method for obtaining integral length, that is in-
tegrating up to the x-position of the first zero-crossing of the au-
tocorrelation function, results are obtained for integral length of
the vorticity from the transverse autocorrelation function. The
results are presented in Figure 5. It appears that the spatial do-
main required for an accurate determination of vorticity integral
length is smaller than needed for velocity integral length, being
approximately 1.5 compared to 3.2. However, for all the Re), the
number of multiples of vorticity integral length required in the
spatial domain is larger, being between 4.5 and 7 times larger
than the integral length compared to between 4 and 5.5 times
larger for the velocity integral length. It is likely, however, that
a spatial domain chosen to accurately resolve velocity integral
length will also accurately resolve vorticity integral length.

Conclusions

Integral length is important in characterising the structure of
turbulence. It is a measure of the longest correlation distance
between the flow velocity (or vorticity, etc) at two points in the
flow field [3]. It is possible to extract an integral length from a
numerical or experimental investigation of turbulence, it is how-
ever not possible to determine if the integral length so obtained
is accurate.

In some of the archival literature a domain equivalent to at least
two to three times the measured integral length is recommended
for the accurate determination of integral length (eg. [2]). How-
ever a more recent citation states that a reasonable lower limit
on the domain is eight integral length scales [7]. This recom-
mendation is consistent with the results shown here, where it is
found that, in the worst case, the spatial domain must be at least
six times larger than the integral length. In the same reference
[7] it states that the effect of limiting the spatial domain has
not been studied systematically. In this paper a systematic ap-
proach to determining the effect of limiting the spatial domain
is presented. The results have suggested that a spatial domain
at least six times larger than the integral length is required for
the two Reynolds numbers presented, however the results indi-
cate that there may be a Reynolds number effect that should be
considered. Further investigations may show that specifying a
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Figure 5: Integral length calculated from the autocorrelation
function of vorticity over a range of spatial domains (A). Also
shown is the ratio of the spatial domain to integral length (L/A).
Results are shown for a range of Re).Hollow symbols indicate
A, filled symbols indicate A/A.

simple relationship between integral length and spatial domain
is inappropriate.

In the case of the integral length of the vorticity it appears that
the spatial domain required for determination of an accurate in-
tegral length for velocity will also be sufficient for determina-
tion of an accurate integral length for vorticity.
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