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Abstract

As a means of studying the structure of the turbulence, the time
mean invariants, defined according to the theory of Lumley [3]
has proven to be a useful and popular tool. According to the
theory there is a domain, known as the Lumley triangle, within
which all realizable Reynolds’s stress invariants must lie. The
borders of this domain describes different states of the turbulent
stress tensor. It has been found that there is some confusion in
the terminology used when describing these states. The confu-
sion is related to whether the notation is used to describe the
shape of the stress tensor or the eddies of the turbulence. Choi
and Lumley [1] noted the same controversy in terminology, but
since the confusion is still found to exist the current work de-
scribes the fundamental relationships which exist between the
shape of the stress tensor and it’s invariants. Also an analysis is
given to clarify the existing terminology.

Introduction

Any symmetric tensor, like the stress tensorτi j , may be divided
into a traceless deviator,τ′i j and an isotropic part,τ◦i j

τi j = τ
◦
i j + τ

′
i j (1)

where

τ
◦
=

1
3

τkkδi j (2)

and

τ
′
i j = τi j − 1

3
τkkδi j (3)

In the case of true isotropy all the elements inτ′i j would be-
come zero. The non-dimensional form of the anisotropy tensor
is given by

bi j =
τ′i j
τkk

=
τi j

τkk
− 1

3
δi j (4)

By using the Cayley-Hamilton theorem, the characteristic equa-
tion for any second order symmetric tensor may be written as

σ3− I1σ2 + I2σ− I3 = 0 (5)

where theI ’s are the first, second, and third invariants of the
tensor andσ is the principal stress. The invariants are related to
the tensor terms according to the relations

I1 = bkk (6)

I2 = −1
2

bi j b ji (7)

I3 = det(bi j )

where the flow has been assumed to be incompressible.

Assuming incompressible axisymmetric turbulence withy as
the symmetry axis, and using cylindrical coordinates, the in-
variants may be expressed as

I1 = 0 (8)

I2 = −1
2
[b2

rr +b2
yy+b2

θθ +2b2
ry]

I3 = [brr byy−b2
ry]bθθ

In solving the characteristic equation, equation (5), for a given
set of invariants the eigenvalues and the related eigenvectors of
the tensor are revealed. This gives the main stress directions of
the stress tensor and their magnitude. Several solutions are pos-
sible depending on the stress field, but there are also definitive
bounds with respect to the realizability of the flow which have
led to the anisotropy invariant map (initially proposed by Lum-
ley [3]) and therefore often referred to as the Lumley triangle)
given in figure 1.

−0.04 −0.02 0 0.02 0.04 0.06 0.08
0

0.05

0.1

0.15

0.2

0.25

0.3

I3

−
I2

1 Component

2 Component
Axisymmetric  

I
3
<0 

I
3
>0 

Isotropic 

2 Component

Axisymmetric

Axisymmetric

Figure 1: The anisotropy invariant map, AIM.

At the origin (I2 = I3) the isotropic state is found. From this
point two limiting lines are found where the flow is assumed
to be axisymmetric (i.e.bry = 0 and two of the diagonal el-
ements are equal e.g.brr = bθθ). This leads to the relation
I3 = ±2(−I2/3)3/2. Each of these lines have a limiting value.
In the first case the two identical diagonal terms are smaller than
the third element and tend to zero. This leads to a 1 component
state of turbulence (1C in figure 1). The other possibility is that
the two identical elements dominate so that the third component
is ignorable. This leads to the two component axisymmetric
state indicated in figure 1. The line joining 1- and 2-component
axisymmetric turbulence represents the all other possible states
where only two diagonal components exist.

As a tool in describing the state of the turbulence Lee and



Reynolds[2] designated different shapes of the stress field to
the value of the invariants in equation (5) such as rod and disk
like turbulence. However, in their description Lee and Reynolds
were focusing on the turbulent eddies rather than the stress field
itself. This has over the years lead to a confusion when describ-
ing the stress field since the characteristic shapes related to the
stresses and the eddies are not generally the same. If not aware
of this the axisymmetric limits of the Lumley triangle will be
described by shapes that do not relate to the stress tensor the
invariants represent.

In the following the relations between the stress field and the
invariants are shown and then related to the shape of the stress
tensor. This will be compared to the shape of the turbulent ed-
dies for the same type of turbulence. It is must be emphasized
that this analysis does not have an influence on turbulence mod-
elling, but have implications in understanding and visualization
of the stress field. It must also to be noted that the aim of the
current paper is to clarify the terminology used.

The characteristic shape related to the stress tensor

In terms of the stress tensor the visualization of the stress field
is determined by the relative sizes of the three main stresses and
the designations of the axisymmetric limits are based upon the
following analysis. The Reynolds stress tensor,τi j , is a second
order symmetric tensor. As stated by the spectral theoremevery
real symmetric matrix can be diagonalized by an orthonormal
matrix. In other words the Reynolds stress matrix,

T = τi j =




τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ32 τ33




may be written as
T = QΣΣΣQ−1 (9)

where

ΣΣΣ =




σ1 0 0
0 σ2 0
0 0 σ3




is the eigenvalue matrix ofT andσi are the eigenvalues.Q is
an orthonormal matrix with the properties

QQ−1 = QQT = I . (10)

Now, recalling that the stress,fτ, in the direction of a vectorn is
represented by the linear operatorT onR3 (T: R3 → R3 where
bothn, fτ ∈ R3):

fτ = T ·n (11)

By the use of relation 9 and left-multiplying withQ−1 this may
be rewritten as

y = Q−1fτ = ΣΣΣQ−1n = ΣΣΣx, (12)

which means that by changing the old coordinate system into a
new coordinate system, coinciding with the principal axis of the
stress tensor,T becomes a diagonal matrixΣΣΣ with the principal
stresses ofT on its diagonal.

If x is considered as the normalized stress vector of an isotropic
field describing the unit sphere we have

x = 〈x1,x2,x3〉
xTx = 1 ⇔ x2

1 +x2
2 +x2

3 = 1. (13)

Equation (12) is now representing a distortion of this stress vec-
tor due to the mappingT. Left-multiplying equation (12) with
ΣΣΣ−1 gives

x = ΣΣΣ−1y (14)

By using the equation (10) and the matrix relation

(AB)T = BTAT (15)

the following is obtained

xTx = yTΣ−2y = 1 (16)

or (
y1

σ1

)2

+
(

y2

σ2

)2

+
(

y3

σ3

)2

= 1 (17)

where relation 13 is used. This describes the shape of a spheroid
in the coordinate system(y1,y2,y3).

In order to establish a relationship between the shape of the
stress tensor and the invariants of the anisotropy tensor we need
to relate the eigenvalues ofb = ( T

Tkk
− 1

3 I) andT. From matrix
theory we know that if for two matricesA andB

AB = BA (18)

then the matricesA andB share the same eigenvectors. Since
the tensor1/3δi j is equal to the identity matrixI/3, relation
18 always holds between the matricesT andI . They therefore
share the same eigenvectorn and the following relationship will
hold.

bn = (
T

Tkk
− 1

3
I)n (19)

The relationship between the eigenvalues ofb andT then be-
comes

λi =
σi

Tkk
− 1

3
. (20)

For the non-dimensional anisotropy tensor,b, related shapes of
the ellipsoid formed by the Reynolds stresses are illustrated in
figure 2 and characteristics of the flow are given in table 1.

Figure 2: Illustration of the ellipsoid shapes formed by the
Reynolds stress tensor in different regions of the flow.



State
of
turbulence

Invariants Eigenvalues ofbi j Shape of stress
tensor
(see eq. 17)

Symbol in
figures 1 and 2

Isotropic I2 = I3 = 0 λi = 0 Sphere a,
isotropic

Axi.sym. (One largeλ) − I2
3 = ( I3

2 )2/3 0 < λ1 < 1
3 ,− 1

6 < λ2 = λ3 < 0 Prolate
spheroid

b,
axisymmetric
(I3 > 0)

Axi.sym. (One smallλ) − I2
3 = (−I3

2 )2/3 − 1
3 < λ2 < 0, 0 < λ1 = λ3 < 1

6 Oblate spheroid c,
axisymmetric
(I3 < 0)

One-comp. I3 = 2
27,

I2 =− 1
3

λ1 = 2
3 , λ2 = λ3 =− 1

3 Line d,
1 Component

Two comp., axisym. I3 =− 1
108,

I2 =− 1
12

λ1 = λ3 = 1
6 , λ2 =− 1

3 Disk e,
2 Component,
(axisymmetric)

Two component −I2 = 3( 1
27 + I3) λ1 +λ3 = 1

3 , λ2 =− 1
3 Ellipsoid f,

2 Component

Table 1: Characteristics of the turbulence stress tensor and anisotropic tensor.

Clarification of Terminology

Now it is time to address the misconception encountered in the
designation of the limits of Lumley’s invariant map. Axisym-
metric turbulence means that two of the principal stressesσi , or
λi , are equal. Writingb in terms of the principal direction we
have

b =




λ1 0 0
0 λ2 0
0 0 λ3


 (21)

and for axisymmetric turbulence we have e.g.λ2 = λ3. To-
gether with relationship 8,λ1 + λ2 + λ3 = 0, this gives for the
invariantsI2 andI3

I2 =−3
4

λ2
1 , I3 =

1
4

λ3
1 (22)

From the previous analysis it is clear that if we have one large
principal valueσ1 and two equal but smaller principal val-
uesσ2 = σ3, the turbulence field will be stretched in thenσ1-
direction creating the prolate spheroid of figure 2 b). On the
other hand, ifσ1 is smaller than the other two, the shape of the
stress tensor would be the oblate spheroid of figure 2 c). This
gives the following relationship between the principal values,
invariants, and shape.

λ1 > 0 ⇒ I3 > 0⇒ Rod-like turbulence (23)

λ1 < 0 ⇒ I3 < 0⇒ Disk-like turbulence (24)

Eliminatingλ1 from the relations in 22 we get

I3 = A

[
2

(
− I2

3

)3/2
]

(25)

The term in the parenthesis will always be greater than zero
sinceI2 ≤ 0 (see equation (7)), so the sign ofI3 will be deter-
mined byA. Comparing this with the statements 23 and 24,A
will have the following values

A =
{

1 , Rod-like turbulence
−1 , Disk-like turbulence

With respect to the invariant map of Lumley and in terms of
the shape of the stress tensor this gives the designation of axes
shown in figure 3.

The error in the designation encountered in articles and text-
books is that the two axisymmetric limits with rod like and
disk like turbulence are switched because some researchers talk
about the shapes of the turbulent eddies rather than those of the
stress tensor. In terms of vorticity the visualization of the tur-
bulence would be opposite to that of the stresses. This may be
exemplified by the flow through an axisymmetric contraction as
shown in figure 4. Figure 4A) illustrates a streamwise vortex
tube before and after a contraction. For an incompressible fluid
the transport equation for vorticity is given by the Helmholtz
equation

Dωωω
Dt

= (ωωω∇)UUU +ν∇2ωωω, (26)

whereU is the fluid velocity and the vorticityωωω is defined by
the curl of the velocity

ωωω = ∇×U. (27)

The first term on the right of (26) is called the vortex stretch-
ing term whereas the second term is a viscous diffusion term.
Through the contraction the streamwise component of the vor-
ticity ω1 = is increased by vortex stretching term since it in-
cludes the termω1∂U1/∂x1. ∂U1/∂x1 is positive due to the de-
crease in flow area and therefore a streamwise vortex tube is
stretched and obtains a rod-like shape after the contraction. At
the same time, due to the continuity requirement∇U = 0, the
vorticity in the directions normal to the streamwise direction,
ω2 andω3, are attenuated.

For the turbulent stress tensor, on the other hand, the produc-
tion of the streamwise turbulence component is suppressed by
the secondary production term−τ11∂U1/∂x1 (see [4]).τ11 is al-
ways positive and since the streamwise gradient is positive the
production term will become negative. The result is that the
stress ellipsoid, according to the analysis in the previous sec-
tion, becomes flattened in the streamwise direction and obtains
a disk-like shape as illustrated in figure 4B).

Summary

The aim of the current paper is to clarify the terminology used
when the axisymmetric limits of the Lumley triangle are related



Figure 3: Anisotropy invariant map with correct designation of the axisymmetric states.
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Figure 4: Illustration of streamwise vortex tube stretching(A) and stress ellipsoid deformation(B).

to shapes of the turbulence. As demonstrated by the above dis-
cussion the shape designated to the axisymmetric limits in the
invariant map may be interpreted in two ways. Although this
has no effect on turbulence modelling it does lead to some con-
fusion when visualizing the turbulence. Since the invariant map
itself is based on the turbulent stress tensor, it would be prefer-
able that the designation of its axis is related to this quantity
only.
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