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Abstract

The transient flow driven by turbulent buoyant plumes rising
from the floor of a ventilated filling box is examined. A rect-
angular box is considered and openings in the base and top
of the box link the interior environment to a quiescent exte-
rior environment of constant and uniform density. A theoreti-
cal model is developed for predicting the density stratification
and the volume flow rate through the openings that lead to the
known steady state. Predictions are compared with the results
of small-scale analogue laboratory experiments in which saline
solutions are used to create density differences in water tanks.
The timescale for the flow to approach steady state depends on
the relative magnitudes of two timescales; (t f ) proportional to
the time taken for fluid from the plume(s) to fill a closed box
and (td) the time taken to drain buoyant fluid from the ven-
tilated box. Previous work has shown that the steady state is
characterised by the dimensionless vent areaA∗/H2 and we re-
interpret this quantity as the ratio of the timescales (µ = td/t f ).
For µ > µc the depth of the buoyant upper layer is shown to
exceed, or ‘overshoot’, the steady layer depth during the initial
transient. Applications include the natural ventilation of build-
ings and some implications of our results to building ventilation
are discussed.

Introduction

We consider the time-dependent stratification and flow induced
by turbulent plumes in a ventilated box. Turbulent plumes in
a sealed enclosure were examined by [1] in their ‘filling box’
paper. In a filling box, the plume rises to the top of the box
and spreads laterally outwards to form a density interface be-
tween the plume outflow and the ambient fluid. This inter-
face descends towards the plume source as ambient fluid is en-
trained into the plume and passes into the buoyant upper layer.
[1] showed that the box fills with buoyant fluid on a timescale
which depends on the floor area (S) and height (H) of the box,
and the buoyancy flux (B) of the plume. This resulted in the
‘filling time’, t f , of

t f ∝
S

B
1
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3
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[8] investigated ventilated boxes, including the draining of
buoyant fluid from a box via openings in the top (of areaat )
and base (of areaab) connecting to a quiescent external ambi-
ent. In the absence of mixing the time taken to flush the box,
the ‘draining time’,td, is given by
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whereg′ = g∆ρ/ρ is the reduced gravity of the buoyant layer,
∆ρ the density contrast between the layers,ρ the density of the
external ambient andA∗ the ‘effective’ area of upper and lower
openings such thata∗b = 2
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wherecb andct denote the loss coefficients associated with flow
through the respective openings. This draining time is valid
for uni-directional flow through the openings which usually re-
quires thatab is greater than or roughly equal toat , see [4]. For
high Reynolds number flowscb andct are normally assumed
constant (≈ 0.6).

[8] then consider a single continuous point source input of buoy-
ancy at floor level and balance the draining flow rate with the
supply flow rate from the plume and, thereby, examine ‘empty-
ing filling boxes’, focussing on the steady states. A steady-state
two-layer stratification is reached in which the upper buoyant
layer drives a draining flow through the vents which is balanced
by the filling flow from the plume. The steady upper layer depth
(H −h) depends only on the vent area, the box height and the
plume entrainment coefficient (α):
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where the subscript ss denotes ‘steady state’,

C = π(5/2πα)
1
3 (6α/5)

5
3 and ζ = h/H. Herein we use

α = 0.09 which results in a value ofC = 0.16. The steady
interface heightζss is thus a function of the box geometry only
and the entire problem may be regarded as geometric.

In this paper we re-interpret the parameterA∗/H2C
3
2 in (4), pre-

viously regarded as a dimensionless opening area, as the ratio
of the two competing timescalestd andt f , and examine the in-
fluence of these two times on the transient development of the
flow. We begin by developing a theoretical model of the tran-
sients and then compare this with the results of analogue labo-
ratory experiments. We discuss these results in the context of
ventilation of a lecture theatre. Conclusions are then drawn.

Mathematical model for the transient flow

Buoyancy is input fromn equal non-interacting, localised point
sources of buoyancy fluxB at floor level (z = 0) in a rectan-
gular box of heightH and cross-sectional areaS (independent
of height). Openings, of areaab andat , in the base and top of
the box, respectively, connect the interior environment to a qui-
escent exterior environment of constant densityρ. Buoyancy
transfers between the boundaries of the box and the fluid in the
interior are assumed negligibly small.

The turbulent plumes rising from the sources entrain ambient
fluid and on reaching the top of the box spread radially out-
wards. Following [1] the details of the outward motion are ig-
nored and an infinitesimally thin buoyant layer forms at time
t = 0 with an interface separating the layers. Over time the in-
terface descends and increasingly buoyant fluid is fed into the
layer. A pressure difference between the interior and exterior
environments is thereby established which drives buoyant fluid
out through the upper openings and draws in an equal volume of
ambient fluid through the lower openings. Mixing between the
inflowing fluid and the buoyant layer is assumed negligible and
the flow through each opening is assumed to be unidirectional.
As the layer deepens and increases in buoyancy, the volume flux



out of the box increases and begins to balance the volume flux
fed into the buoyant layer by the plumes. After a finite time, a
steady-state flow is approached in which the volume fluxes bal-
ance, the level of the interface is constant and the stratification
consists of two homogeneous layers as confirmed in the exper-
iments of [8]. Although one might expect a transient density
profile similar to that of a filling box, for the purposes of mod-
elling the movement of the interface we assume that the buoyant
layer is well mixed throughout the transients.

The time rate of change of the buoyant layer thickness (H−h) is
governed by the difference between the volume flux of buoyant
fluid supplied (nQp) via then buoyant plumes, and the volume
flux out through the upper openings (Qout). Conservation of
volume and buoyancy yield

dV
dt

= nQp−Qout and
dVg′

dt
= nB−Bout (5)

respectively, whereg′ andV = S(H −h) are the average buoy-
ancy and volume of the buoyant layer.Bout = g′Qout is the flux
of buoyancy out through the top openings. Introducing the non-
dimensional interface heightζ and reduced gravityδ:

h = ζH and g′ = δC−1B
2
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and using the plume flow rate scalings and the draining theory
outlined by [8], the time rate of change of the buoyant layer
depth and of the average layer buoyancy can be expressed as

dζ
dτ

=
1√
µ

√

δ(1−ζ)−√
µζ

5
3 (7)

dδ
dτ

=
√

µ
1−ζ

5
3 δ

1−ζ
(8)

where the non-dimensional timescaleτ and parameterµ are
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and the timescalestd andt f are defined as
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g′p denotes the reduced gravity of the plume. Further details
of the model and generalisation to both point and line source
plumes are given in [7]. The initial conditions considered are
those of an initially empty box:

δ = 1, ζ = 1 at τ = 0. (13)

The timescaletd is the ‘draining box’ time and is proportional
to the time taken for a buoyant layer of depthH and of buoy-
ancy equal to that in the plumes at heightH to drain completely
through openings of effective areaA∗. t f is the ‘filling box’
timescale forn non-interacting plumes each of buoyancy fluxB
(see [1]). In other words,td relates to the draining of a ventilated
box in the absence of a supply of buoyancy andt f relates to the
filling of an unventilated box supplied with a constant buoyancy
flux from sources at floor level.

Theoretical Predictions

Solution of the governing equations (7) and (8) subject to (13)
was achieved using a finite-differencing scheme. The key pa-
rameters examined are: the interface heights at maximum over-
shoot (ζover) and at steady state (ζss), and the time taken to reach
the maximum overshoot (τover) and the steady state (τss). The
time taken to reach the steady state is defined as the time taken
for the ambientlayer to reach 99% of its steady-state depth
(|ζ−ζss| < 0.01). When the interface overshoots the steady
state,τss is the time taken to overshoot and then settle back to
99% of the steady-state interface height. Numerical solutions
for 10−3 < µ< 105 from τ = 0 toτ = 50 were evaluated; the fin-
ishing time chosen allowed the interface height to reach steady
state for the full range ofµ considered. The steady state is ex-
pected to be approached but never reached, however, given the
(large) finish time ofτ = 50 the flow approached close enough
to the steady state of (4) to be graphically indistinguishable.

Progress to steady state

The variation of the dimensionless volume flow rates, as sup-

plied to (
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5
3 ) and draining out of (
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µ) the buoy-
ant layer, leading to the steady state is shown in figure 1 for
µ = 10. A rapid decrease in the volume flux supplied to the
layer by the plume is predicted as the layer descends towards
the plume source. The volume flux draining out increases more
gradually. The lines shown intersect at the point of maximum
overshoot (see figure 2), after which the volume flux out ex-
ceeds the volume flux supplied to the layer and the layer thins
as it approaches the steady state.
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Figure 1:qin =
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µ againstτ for
a point source plume andµ= 10. The horizontal line represents
the value of the volume fluxes at the predicted steady state (4).

Figure 2 shows profiles ofζ as a function ofτ. An initial rapid
deepening of the buoyant layer is predicted. For sufficiently
large µ the buoyant layer depth exceeds (or overshoots) the
steady value and then thins as it approaches steady state. The
initial rate of change of the buoyant layer depth increases with
increasingµ. The initial increase in layer depth results in the
layer being supplied with increasingly buoyant fluid from the
plumes, and thus a corresponding increase in the average buoy-
ancy of the layer. The time taken to reach maximum overshoot
can be seen to decrease asµ increases.

Amplitude of overshoot

For small values ofµ no overshoot is predicted (see figure 2)
but for larger values ofµ the overshoot can be as high as 3.7%
of H (this occurs atµ≈ 41.4). Although the overshoot typically
is only a small fraction of the box height, it can be a significant
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Figure 2:ζ vs. τ for point sources withµ= {0.5,1,5,10}.

fraction of the ambient lower layer depth when the lower layer
is thin (i.e. for largeµ).

Time taken to reach steady state

Figure 3 shows the time takenτss to reach the steady-state layer
depth. The dashed line is the time to reachζss the first time,
i.e. as the interface descends. The solid line is the time taken
to return toζss after overshooting, i.e. as the interface ascends.
Forµ< µc there is no overshoot, and the layer merely increases
to the steady layer depth. [7] predict thatµc = 0.27 and provide
an explanation for the ‘bulge’ in the plot.
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Figure 3: Time taken (τss) to reach the steady layer depth during
both the initial increase in layer depth (dashed line) and subse-
quent decay in layer depth towards the steady state (solid line).

Experiments

To test the validity of the modelling assumptions a series of
small-scale laboratory experiments were performed in a large,
clear-sided visualisation tank filled with fresh water. A clear
Perspex box (cross section 0.5m×0.5m, height 0.2m) was im-
mersed in the tank. Circular holes, of 3cm and 5cm diameter, in
the top and bottom of the box (including a 1cm and a 0.5cm di-
ameter hole in the bottom) could be opened or closed by remov-
ing or adding plugs. The range ofµ possible was 0.1 < µ< 35,
however, forµ > 10 we were unable to reach the final steady
state owing to the tank stratifying as saline solution flowed out
of the box. Saline solution was supplied via constant head ap-
paratus to a nozzle located in the centre of the box’s top face.
The (constant) volume flow rate of supply was finely controlled
with a needle valve and measured using an in-line flowmeter.
Dye added to the supply aided visualisation and the apparatus

was diffusively back lit. The density of the ambient and sup-
ply was measured using an Anton Paar DMA 35N density me-
ter (accuracy 5×10−4gcm−3). The virtual origin of the plume
source was located following [6]. An experiment was started
by opening a tap supplying salt solution to the nozzle; the nee-
dle valve was pre-set so that the desired flow rate was achieved
immediately. The upper opening area was typically a factor of
two greater than the lower opening area in order to maintain a
low inlet velocity. This low inlet velocity prevents the inflow-
ing jets of fluid from disturbing the interface, and enabled a
sharp interface to be maintained. However, due to the geometry
of the box, for smaller values ofµ (larger vent areas) we were
unable to maintain this ratio resulting in disturbances on the in-
terface. The digital image analysis system DigiFlow [5] was
used to track the interface. A horizontal average of each time
frame was taken (excluding the plume region), and the point of
highest vertical gradient in the intensity (buoyancy) profile was
taken as the interface height.

Results

A descending turbulent plume developed below the nozzle and
after impinging with the base of the box spread radially out-
wards as a saline gravity current. This outflow is considered in
an accompanying paper by the authors at the 15th AFMC. On
reaching the box walls a well-defined saline layer, with depth
approximately equal to the width of the plume at the base of
the box, was clearly visible. The current sloshed up the side
walls of the box before slumping back downward. This pro-
duced wave-like disturbances which propagated along the inter-
face between the layers before dissipating over time. The initial
slumping also produced mixing between the layers, however,
at later times the only fluid crossing the density step was that
entrained into the plume. Saline drained out through the base
openings and was replaced by fluid of ambient density which
flowed in through the top openings. For mostµ the interfacial
disturbances due to the flow through the openings were min-
imal and were wave-like with no mixing across the interface
and, therefore, had no effect on the interface position. For small
µ, however, the disturbances were more significant.
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Figure 4: Predicted and measured values forζover (diamonds
and dashed line) andζss (squares and solid line).

During the initial transients the saline layer rapidly increased in
depth (cf. figure 2) indicating that the draining rate was small
compared with the supply rate to the layer from the plume. The
subsequent development of the stratification within the box was
observed to be dependent on the opening area:

(i) For relatively small openings (µ > 1) the buoyant layer ini-
tially deepened and the interface became horizontal and sharper
as the initial slumping phase decayed away and the mixed fluid



at the interface was entrained into the plume. The layer depth
increased to a maximum and then decreased to the steady-state
depth. Other than the finite thickness of the initial outflow layer
this is qualitatively in keeping with our model. Measurements
of interface height show generally good agreement with theory
for this range ofµ (see figure 4). There is also good agreement
between our theoretical predictions ofτover andτss for µ > 1
(see figure 5) and our experiments.

(ii) For sufficiently large opening areas (µ < 1) a different flow
regime was observed. Instead of the hydrostatic two-layer strat-
ification modelled, the interface in the region below the open
vents was broken up and mixed by the inflowing jets of ambient
fluid. Away from the openings the interface was also unstable
with waves persisting. A significant initial overshoot of the in-
terface height was also observed due to these disturbances. The
final average interface height was not observed to vary withµ
and was of the order of the plume width atz= H. Therefore,
for µ< 1, the experimental measurements ofζ andτ show poor
agreement with our theoretical predictions.
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Figure 5: Predicted and measured values ofτss and τover.
Squares and dotted line indicate the time taken to reach the
steady-state height. Diamonds and solid line indicate the time
taken to reach maximum overshootτover. Stars and dashed line
indicate the time taken to settle back to the steady state.

Discussion

Our model and experiments have shown that transient
buoyancy-driven flow in a ventilated enclosure yields a reduced
volume flow rate through the enclosure compared to the steady-
state value and an overshoot of the buoyant upper layer for suffi-
ciently largeµ. We now briefly discuss the implications of these
transient phenomena in the context of a lecture room.

We consider a lecture theatre with floor area 300m2, height 6m
and with 256 occupants. We assume that each occupant can
be represented by a plume with a power output of 100W. We
also assume an opening area of 1.5% of the floor area giving
A∗ = 2.9m2. We model the heat input in two ways. Firstly as
256 individual plumes (one from each occupant) and secondly
as a single plume (assuming they all merge near their source).
The parameters used and resulting timescales are summarised
in table 1. These values are representative of those used in ven-
tilation models of actual buildings (see [9] & [3]).

The first point to note is the significant variation inµ depending
on how the heat is input. Also the time taken in both cases to
reach steady state is of order a quarter of an hour. This means
that for the first quarter of a one hour lecture the ventilation rates
will be less than designed for using a steady-state model.

256 plumes single plume
# Plumes 256 1

td 54 8.5
t f 0.25 11√
tdt f 3.8 10
µ 201 0.8

τover 0.8 1.5
τss 2.6 1.5

tover(mins) 3 14
tss (mins) 10 14

Air changes/hr 6.6 3.9

Table 1: Typical lecture room parameter values and timescales
for a floor area 300m2. Times are given in minutes. Buoyancy
flux has been calculated usingB = gP

ρTCp
whereP andT are the

source power output (W) and temperature◦K) [2], respectively.

Conclusions

Transient flow in ventilated boxes driven by a sudden increase
in buoyancy flux has been investigated. The transients are gov-
erned by the relative magnitudes of the draining (td) and filling
(t f ) timescales as characterised by the parameterµ= td/t f . The
layer depth may overshoot the steady-state depth forµ > µc.
Results of laboratory experiments show good agreement with
our predictions forµ> 1. However, below this value, a constant
thickness layer was measured and found to be independent ofµ.
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