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Abstract

The availability of high-quality numerical simulations,ittwv
Reynolds numbers which are now in the rangdRef = 2000,

and which will probably be extended Re =~ 4000 in the near
future, have revitalized the study of turbulence near waltbe

last decade. Simulations can now be used to study the dyaamic
of the buffer and of the lower logarithmic layers in some deta
and some of the results obtained in that way are reviewed here
Particular attention is paid to the reasons for the faildrthe
scaling of the turbulence intensities with, which are traced to
different causes in the buffer layer and in the outer flow. /hi

in the buffer layer the cause seems to be the growing scale dis
parity between the near-wall and outer-flow contributiohis
shown that in the outer flow some spectral ranges scale wéth th
centreline velocity. The generation of the largest scafadb@®
streamwise velocity component in the logarithmic layerls®a
studied, and shown to be consistent with the formation glar
scale passive wakes of smaller individual ejections. Ttterda
are related to attached clusters of vortices extending fitwn
buffer region into the logarithmic layer.

Introduction

The study of turbulence near walls has experienced a renais-
sance in the last decade, largely because of the avaijabflit
high-quality numerical simulations. The numerical Reysol
numbers, now in the range &e = 2000, allow for the first
time the study in some detail of the dynamics of the buffer and
of the lower logarithmic layers. The present and probaktigréu
status of direct simulations of turbulent channels, andesofn

the results obtained from them, are reviewed here.

Three issues are particularly addressed. Consider firsttifier

and viscous layers. It has been known for some time that this
part of the flow is relatively independent of the flow above it
[17], and actually survives even when all the rotationaltfiae
tions are artificially removed abowe™ ~ 60. This is in agree-
ment with the fact that most of the mean velocity differerafe,
the turbulence production, and of the energy dissipatieside

in this region, which therefore sees the outer flow as a veligti

mental evidence for the latter lack of proportionality h&éady
been found in [12, 19], but it has only been through numerical
simulations that the former has been documented [2, 3, 14]. W
will discuss below what the problem is, and what its solution
appears to be.

Finally we address the question of the scaling of the veloc-
ity fluctuations in the logarithmic layer and in the outerday
The classical view is that all the velocity fluctuations inliwa
flows should scale with the friction velocity [30], but again
the experimental evidence suggests otherwise [7], anddit ha
already been noted in [31] that ‘inactive’ eddies, thoseaamt
rying Reynolds stresses, could scale in some other way. We wi
show that at least some eddies, those large enough to span the
whole thickness of the flow, scale with the flow velocity at the
centreline, and we will discuss the consequences thatfdto

the behaviour of the overall turbulence intensities at \egh
Reynolds numbers.

We usex, y andzfor the streamwise, wall-normal, and spanwise
coordinates, and, v andw for the corresponding velocity com-
ponents. The half-height of the channel, the pipe radiubtze
boundary-layer thickness are denotedhby

Numerical simulations

There should be by now little doubt that careful numericad-si
ulations of the Navier—Stokes equations are just diffekards

of experiments, and that there is no reason to expect them to
be less accurate than laboratory ones [23]. Some of their-dra
backs, such as the artificial nature of some boundary conditi

are no worse than the artificial nature of the walls in windtun
nels and can, in both cases, be avoided by careful design. It
is also not always clear that what we simulate is exactly the
same thing that we would measure in the laboratory, but there
is no reason why it should be. Simulations and experiments
are equally valid idealizations against which to test thesoand
designs.

There is also no doubt that, once a flow has been successfully
simulated, it can be observed more thoroughly than in a lab-

weak perturbation of the local processes. These autonomous oratory experiment. The cost of carrying out a large simula-
dynamics have been discussed elsewhere [9, 11, 15, 16], and tion is high, although not necessarily higher than that dlfdeu

will not be addressed here, but recent experimental resudfs
gest that there are effects of the Reynolds number on the scal
ing of buffer-layer quantities [7]. They can only come from
interactions with the outer flow, and they are also seen in sim
ulations. We will review below some results obtained in the
last few years, concerning their mechanism and their lonati

in scale space.

The next question is the scaling of the structures both in the
buffer and in the logarithmic layer. It follows from the stud

of the numerical energy spectra that the relation between th
width and the length of the energy-containing structura®ois
straightforward, in the sense that both length scales arproe
portional to each other, nor to the distance to the wall. Expe

ing a large wind tunnel, but the instrumentation problenes ar
simpler, and almost any observation that can be imagined can
be made. While the results of laboratory experiments are of-
ten constrained by the instrumentation technology, thosa f
numerical simulations are mainly limited by the ability bt
researcher to ask the right questions.

Another advantage of simulations over laboratory expenisie

is the ease with which they can be adapted to perform ‘con-
ceptual’ experiments, in which the equations of motion @r th
boundary conditions are changed to, in effect, ‘take théesys
apart’ [17]. This has always been a useful device in physics,
and conceptual experiments have often been used to constrai
physical theories by asking what would happen if a given ‘im-
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Figure 1: Evolution of direct channel simulation® , peak
speeds of computers, in Mflops/s, as a function of the fabrica
tion year. The two trend lines are for single- and multi-g@ssor
systems. The two upper lines are for total flops in one dayand i
six months of dedicated time at the computational speedseof t
parallel trend line¥y are the estimated costs of the simulations
in table 1.

Re Box Year Points
180 4dmix 4m/3 | 1987 [21] 5 Mp
590 21X T 1996 [24] | 40 Mp
550 8nix4m | 2001 [2] | 600 Mp
950 8nix 3 | 2003 [3] 4 Gp
1900 X T1/2 2003 [3] | 450 Mp
4,000 8nx 3m | 2005 130 Gp
10,000 | 8mx3m | 2015 15Tp

Table 1: Available and planned direct numerical simulatiof
turbulent channels. The box refers to the spatial peripdif
the spectral simulation contained in the table.

plausible’ modification were implemented. Think for exampl
of the concept of potential inviscid flow. For such exercises
be useful, however, we should be able to answer the question
that we have posed, and it is in that respect that many of tie id
alized systems of classical physics differ from complexspne
such as turbulence. While it might be possible with a pencil
and paper, and with a lot of imagination, to decide what hap-
pens when two observers try to synchronize their clocks unde
certain conditions, the answer is often harder when trymg t
decide the outcome of a particular modification to a turbulen
flow. Numerical simulations allow us to obtain answers to our
conceptual experiments.

While those are clear advantages of simulations over labora
tory experiments, the argument over their relative merés h
often centred on the different question of which systems can
be studied with each technique. It is often claimed that expe
ments can be run at higher Reynolds numbers than simulations
This question was reviewed in [13], where it was argued tiat t
Reynolds number difference between laboratory and computa
tion has been steadily eroding with the advances in comgutin
technology, and that in many respects both are now compara-
ble. This is particularly true when the magnitude of inteies
something more complicated than the turbulence intessitie
even in some cases anything beyond the mean velocity profile.

In the particular case of turbulent channels, which will be t
main subject of this paper, the friction Reynolds numbers of

the early simulations &g = uch/v = 180 [21] have now been
multiplied by five [3]. A simulation aRe ~ 2000 is also avail-
able, although the size of its computational box is too staeall
trust the results anywhere except very near the wall. Thi-ava
able simulations are summarized in table 1, and they ovénkap
experimental range. There are few well-documented laborat
channels aRe > 1000, and the main problem in validating the
results of the simulations is now the lack of comparable gxpe
mental data.

The cost of these simulations is plotted in figure 1 against th
historical and expected evolution of computer power. They
cluster around one CPU-day of the fastest machine available
at the time, showing that the barrier for larger simulatiis
more political than technological. None of the simulatiagms

the figure were ran in the fastest available machine.

Two simulations still in the planning stage are includeckibl¢

1. The one aRg = 4000 is at present in the advanced prepara-
tion phase, and will most probably be ready within the next tw
years. The simulation &g = 10* is a more distant prospect,
but it holds a special place in the planing process. The two
main ‘intrinsic’ open problems in wall-bounded turbulerare

the interaction between the inner and the outer layers, laad t
dynamics of the logarithmic layer. Both require a sufficignt
large Reynolds number.

The length of the dominant structures in the buffer layebisia
1000 wall units [14], while that of the global modes in theayut
region is about five channel half-widths [2]. WhBwe; = 10%,

the ratio between the two lengths is about 50, and probatug la
enough to be considered infinite from the point of view ofthei
interaction. That Reynolds number also results in abouta fa
tor of ten between the upper and lower limits of the logarith-
mic layer [25]. Such a simulation can probably be considered
as ‘asymptotically large’ from the point of view of clarifyg
the physics of wall-bounded flows at zero pressure gradient.
should be ready in about a decade.

It may be interesting at this point to discuss the question of
the size of the computational box needed to simulate channel
We will see below that there are very long structures in turbu
lent wall-bounded flows, particularly for the streamwiséoee

ity component, which contain a substantial fraction of the e
ergy of the fluctuations. As long as the physics of those large
scales, and of their interactions with other parts of the fisw
not completely understood, they have to be simulated to have
any confidence in the results. As we will see below, this under
standing has been achieved only in part, and many of thetresul
ing scaling laws are still in doubt. Any new simulation aglar
Reynolds numbers, which is bound to be expensive and not eas-
ily repeated for some time, should use boxes large enough to
include them.

With this in mind, there are still many things that can bernear
from smaller boxes, in particular regarding the dynamicthef
smaller scales in the absence of the larger ones [16, 17]eSom
thing that usually does not work, however, is to use smaller
computational boxes to save computer time. Consider for ex-
ample the simulations in table 1. It is our experience thaebo

in the order ofLx = 8 need to be run for about ten washouts
(10Lx/U¢) before the statistics of the larger scales are reason-
ably converged. Smaller boxes need to be run much longer, in
part to accumulate enough statistics at the intermediaiesc
and also because there is a tendency for the long Fouriersnode
in the centre of the channel to become ‘frozen’, producing sp
rious effects on the velocity fluctuation profiles which act n
necessarily small. The problem is that short periodic bakes
not really lack long scales, but merely treat them as being in



finitely long. The scales are in the simulation, but theiralyn
ics are in general incorrect.

The box aRe = 1880 in table 1, for example, had to be run for
several hundred washouts before its statistics could bgidon
ered moderately converged. Even then the mean velocity pro-
file cannot be trusted above the logarithmic layer. The same
is true of the somewhat larger box R = 590, which also
had to be run for hundreds of washouts before converging, and
which even so retained a residual asymmetry in the velocity p
file at the end of the simulation [24, private communication]
Our experience with intermediate boxes of size<®r is that
they have to be run for about 80100 washouts before the
statistics converge in the outer region. These long integra
times negate much of the gain in computer time which could be
expected from using smaller boxes (although obviously not i
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memory usage), and they do so at the expense of decreasing the Figure 2: Maximum intensity of the streamwise velocity fluc-

quality of the results. The consequence is that it usualjs pa
to run the largest computational box compatible with the com
puter resources at hand, and that the main reason to usesmall
boxes should be to simplify the physics, rather than to simort
the simulation time.

The near-wall layer

Itis well known [30] that wall-bounded turbulence over srttoo
walls can be described to a good approximation in terms of two
sets of scaling parameters. Viscosity is important neawie

and the length and velocity scales in that region are coctettiu
with the kinematic viscosity and with the friction velocity.
Everything in that region is expected to scale in wall units.

Far from the wall the velocity also scales with but the length
scale is the flow thickneds In the classical approximation the
logarithmic region extends between the inner and the oeter r
gions, because the only possible length scale isyfitself [30].
The velocity in the intermediate layer follows approximgpte

()

The viscous and buffer layers are extremely important fer th
flow as a whole. The ratio between the inner and outer length
scales is the friction Reynolds numbBwg, which ranges from
200 for barely turbulent flows t®e = 5 x 10° for large wa-

ter pipes. The near-wall layer in the lattgr, < 150, is only
about 3x 104 times the pipe radius, but it follows from (1)
that, even in that case, 40% of the velocity drop takes place
belowy™ = 50. Turbulence is characterized by the expulsion
towards the small scales of the energy dissipation, awan fro
the large energy-containing eddies. In wall-bounded fldvas t
separation occurs not only in scale space for the velocity flu
tuations, but also in the mean velocity profile. The singtiés

are expelled both from the large scales, and from the cefitre o
the flow towards the wall.

Ut =k "tlogy" +A.

Because of this singular nature, the near-wall layer is nbt o
important for the rest of the flow, but it is also essentiafly i
dependent from it. That was for example shown by numerical
experiments with ‘autonomous’ simulations [17] in whicleth
outer flow was artificially removed above a certain wall dis&

. The near-wall dynamics were unaffected as long'ag; 60.

Understanding the structure of this part of the flow has prakct
implications. The velocity at the centreling;” = (2/c;)Y/2,
determines the friction coefficiert; when expressed in wall
units, and we have seen than a large fraction of that velocity
resides in the buffer layer. It is for this reason that thestay
belowy™ ~ 100 has been intensively studied. It is dominated
by coherent streaks of the streamwise velocity and by quasi-
streamwise vortices. The former are an irregular array 1od lo

tuations as a function of the Reynolds number. In all cases
the maximum is achieved negr = 15. O, boundary layers;

o, channels;A , pipes. Open symbols are laboratory exper-
iments, and closed ones are computations. The dashed line is

U2~ log(20Re).

Figure 3: Longitudinal energy spectkaEuu/u$ as a function

of the wavelengti\x = 211/ky, and of the Reynolds number, at
y*t = 20. Each horizontal line of the shaded area corresponds
to a different Reynolds number. The upper block are laboyato
boundary layers [10]. The lower one are numerical channels
[2, 3]. The dashed line i3x = 10h, and the solid one i&] =
1000. Adapted from [14].

(x™ ~ 1000 sinuous alternating streamwise jets superimposed
on the mean shear, with an average spanwise separation of the
order of z" ~ 100 [29]. The quasi-streamwise vortices are
slightly tilted away from the wall [11], and stay in the near-
wall region only forxt ~ 200. Several vortices are associated
with each streak, with a longitudinal spacing of the order of
xt 2 400. The basic cell of wall-parallel dimensions 40000

wall units was also identified in [16] as the smallest dynahic
periodic box able to self-sustain turbulence in the neiginbo
hood of the wall.

The intensity of the streamwise velocity fluctuations resch
maximum aroung™ ~ 15, and classical theory implies that the
maximum intensity should scale in wall units. It is cleamfro
figure 2 that this is not true, and that the increasing trend is
present both in the experimental and in the numerical result
This anomalous scaling is accompanied by other scalingyésl

in the buffer region. The most obvious is the form of the pre-
multiplied energy spectrum, which was shown in [10] to conta
two peaks, a short one at a streamwise wavelehgth: 1000,
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Figure 4: Two-dimensional spectral energy densitigs at 16,
in terms of the streamwise and spanwise wavelengths. Shaded
contours are an autonomous flow [14] masked alyove- 60.
Lines are full channels [3}---- , R = 550; ,Re =
934. The solid diagonal line is horizontal isotropy, = Az,

and the dashed one s ~ )\}(/3. The dotted rectangle is the
approximate size of the minimal self-sustaining flow un@]f1

(8) kukzEuu/U2. (b) —kxkzEyy/U2.

independent oRe;, and a long one that scales in outer units as

x ~ 10h. A compilation of experimental and numerical spectra
is found in figure 3. Since’? is the integral of the energy spec-
trum, a nonclassical scaling of the latter almost autoraliyic
implies a similar nonclassical behaviour of the former.

The Reynolds-number dependence of the large scales can be
also be seen in figure 4, which shows two-dimensional energy
densities in the near-wall region. These spectra have st lea
three regions. On the lower left corner, at scales of therorde
of the minimum flow unit mentioned above, the two Reynolds
numbers in the figure collapse well in wall units, and so dbes t
autonomous flow that is also included. These are the stestur
involved in the nonlinear turbulence regeneration cycled a
they are present both in the spectrum of the energy and in that
of the Reynolds stress. Both spectra continue towards tonge
wavelengths along a ridge with the anomalous power scaling

Az~ }\%/3' which is present in the three flows. At the Reynolds
numbers of the present simulations this spectral rangecalso
lapses in wall units, but the autonomous flow behaves differ-
ently, and it is not clear from the present data whether thgeri
will become longer at higher Reynolds numbers, or whether th
present data are already asymptotic. It was shown in [14] tha
the structures in this ridge are passive, in the sense tbatite

not involved in a two-way cycle. Their wall-normal velocity

needed to create the streamwise-velocity structures,diuha
other way around. It was also shown in [14] that the geometric
relation between the smallerstructures in the minimal region
and the longeu-structures along the ridge is consistent with the
latter being wakes of the former. Their scaling is also cstesit
with this explanation. The similarity solution for wakesead-

ing in a simple shear under the action of a constant visgosity
both of which are good approximations near the wall, is

)

Further support for the wake model will be provided in thetnex
section.

U~ u(y/x3, 2/x13).

The spectral region in which the three flows disagree most
clearly is the upper right-hand corner, where the spectrim o
the higher Reynolds number flow is longer and wider than that
of the lower one. This component is completely absent in the
autonomous flow, and is located aroukidx A; = 10h x h. Its
length thus agrees with the long-wavelength end of the spect
in figure 3. Itis also the location of the ‘global’ modes ident
fied in [2], which span the whole channel half-height and \whic
will be the subject of a later section.

This strongly suggests that the growth of the intensity peak
figure 2 is due to large-scale outer flow structures. Note that
contrary to the other two spectral regions, this compongnt i
not present in the Reynolds-stress cospectrum, and iSohere
‘inactive’ in the sense of Townsend [31]. It has long been un-
derstood that, because the Reynolds stress definéise most
likely reason for the failure of the wall scaling is the prese

of inactive motions [31], and this is confirmed by the exadlle
collapse of the two full-channel cospectra in figuré}(

Note however that this correspondence is not automatic. The
edge of the energy spectrum in figurea@vhich is closest to

the isotropic diagonal is missing in the cospectrum, butates
very well in wall units.

Wakes in the logarithmic region

As we move away from the wall, the form of the energy spec-
trum changes [2, 3]. Two spectra are shown in figure 5. The
ridge of ‘wakes’ is also present in them, but it follows
Az (yAx)Y2, 3)
rather than a cube-root law found in the viscous layer. This
is also consistent with the model of a wake left by a compact
structure, because in the logarithmic and outer layer tlaeitg
is almost constant, and the diffusion of the wake is due to an
eddy viscosity which, on dimensional groundsyis= uy. The
similarity solution is then [3]

u~ u(y/x, z/(y9/?). @)

For wavelengths shorter thaw ~ y the spectrum is bounded
by (3) and by the line of horizontal isotropy; = Ay, but longer
structures are always anisotropic and follow the wake ridge
was shown in [2, 3] that the structures of the wall-normal ve-
locity v are effectively confined to the ‘isotropic’ regidi < y.
Those eddies are detached from the wall, in the sense that the
correlation of individual Fourier modes between the lotpemnic
and the buffer layer is very small. The height over which éos
correlations are large increases as the structures becomger!
The eddies touch the wall when ~ y, and the attached eddies
beyond that limit are the ones that cluster along the walgerid

The nature of the structures generating the wakes is disduiss
[4], which studies the vorticity structures in the buffeddaga-
rithmic layers. Vortices are defined as being formed by jgaimt
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Figure 6: The left plot shows the perturbation velocity figld— U (y), v), conditioned on the presence of a vortex cluster, orxthg
plane bisecting the bounding box of the cluster. The shadealia the probability density function of finding a vortexhelright-hand
plot is a section of the conditioned field in the cross planekethin the left figure. The shaded contours are the pertiorbatreamwise
velocity; u—U(y) = —0.3(0.1)0.1. Re = 550. Only clusters witly,> 100 are included.
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Figure 5: Two-dimensional spectral energy denity.E /u2.
Re = 934. The solid diagonal is; = Ax. The solid horizontal
line isA; = 3h, and the dashed diagonalls = (yAx)Y/2. The
shaded contours are the streamwise velocity; the lineshare t
Reynolds stressaf y/h=0.1. (b) y/h=0.5.

which the discriminanb of the velocity gradient tensor is larger
than a properly-defined threshold [6]. Connected sets di suc
points are collected into individual vortex clusters, whiweak
naturally into two distinct groups according to whetherithe
lowest points are above or below a critical level aroyhdy 20.

We will call the latter group attached and the former detdche
The most interesting clusters are those attached to theawdll
reaching into the logarithmic layer, aboye = 100. When each

of them is inscribed into a parallelepipedal box alignedht® t
coordinate directions, the boxes are self-similar, witnen-
sionsA; ~ 1.5Ay andAy ~ 3Ay. Note that for attached clusters
it makes sense to associdigwith the heighty, becausgmin is
small. When this is done, and whég andA; are also equated
to the streamwise and spanwise wavelengths, the dimensfons
the bounding boxes roughly coincide with the location of the
spectral peak for the wall-normal velocity The vortices them-

selves appear to be arranged as surfaces or shells within the
boxes; while the volume of the bounding box increaseAf,as

the volume contained in points classified as vortices irsgga
only asAZ.

A conditionally-averaged flow field, based on the centrefief t
vortex boxes, and scaled with their vertical dimensionsysh

a strongv ejection surrounded by two counterrotating vortices,
as in a classical hairpin. The antisymmetry is only statédti
and, as in the case of the buffer-layer vortices [28], thefittie
evidence for symmetry in individual vortex clusters.

When the conditionally-averaged flow field is extended down-
and up-stream from the location of the vortex box, the result
is that in figure 6. In thex—y streamwise plane bisecting the
mean location of the box, the presence of a streamwise-itaeloc
structure linked to the vortex cluster is clear. Its locatiith
respect to the cluster is consistent with that of a wake. If we
assume that the cluster is advected with the mean velodity at
centre of gravity, the flow closer to the wall is slower thaa th
cluster, and the wake lzehindthe cluster. Above the centre of
gravity, the mean flow is faster than the vortices, and theawak
is in front of the cluster. The averaged vortical structure of the
ramp in the transverse plane is shown in the right part of fig-
ure 6. It has two counterrotating vortices which are muchdar
than the size of the original vortex packet, and which ard+rem
niscent of the downstream structure of the wake of a trassver
jet in a boundary layer [8].

Similar ramp-vortex structures have been observed by previ
ous investigators [1, 5], with geometric characteristicsilar

to those found here, but the present interpretation of tteeir
lation with the vortex packets is, to our knowledge, new. The
results in [4] suggest that the shear layer which definesape t
of the ramp is associated with detached vortex clusterdewhi
the attached clusters are only found at the ramp origin. kote
example the absence of any coherent flow structure upstream o
the vortex box in figure &), except in the buffer layer. When
the conditioned flow field is computed for the detached vortex
clusters, the low-speed region extends symmetricallyrepst
and downstream of the box.

Itis interesting to note that the above description is nstrieted

to ‘real’ vortices, but that it still holds when the flow is fil-
tered to larger scales (up to 2@040 x 100 wall units in our
experiments). Individual vortices are then smoothed, ahatw
remains is only the integrated circulation over fairly kangpl-
umes. The velocity perturbations due to the ramps are ofrthe o
der ofug, and the total projected surface of the boxes bounding
the wakes is enough to cover the whole wall with some over-
lap. The perturbation due to the wakes is therefore a sufirtan
fraction of the total perturbation energy in the channet@sd

be deduced from the spectra in figure 5.



Those spectra suggest that the wakes widen along the rijdige (3
until A; ~ 2h. This effectively determines the longest wave-
length in the spectrum, which is

Axmax/h~ 4h/y. (5)

This limit is longest at the bottom of the logarithmic layer,
whereyt ~ 100 andhy max/h ~ Re/20. These are very long
structures that, even taking into account possible nurakfiac-
tors, point to hundreds of boundary-layer thicknesses @it hi
Reynolds numbers. Spectral peaks of the order df [28ve
been documented in experiments [12, 19], and they are plyobab
limited by the length of the experimental records. The prese
simulations only reach tdy ~ 25h and, although longer to our
knowledge than any other available simulation, they are not
long enough to settle the matter. The one-dimensionalratrea
wise premultiplied velocity spectra at the bottom of theig-
arithmic layers are still essentially flat at their longesive-
lengths, as seen in figured)( On the other hand, numerical
experiments with shorter simulation boxes show very litife
ference in the part of the spectrum that is resolved by the sim
ulations [3], suggesting that those very long structureses
sentially passive and do not feed into the shorter ones. e ha
already noted that a short simulation box models long scales
as being infinitely long, and the previous results suggest th
given enough time to randomize, structures longer thantabou
5h behave as if they were dynamically infinite.

The shortening of the spectra above the lower logarithnyierla
predicted by (5) had been previous noted experimentally, al
though without explanation [12, 19, 22].

An interesting question is whether the vortex clusters ded t
ramps discussed here are features of the whole logarithmic
layer, or just of its lower edge. The probability densitydtion
p(4y) for the dimensions of the attached vortex clusters col-
lapses well in wall units for different Reynolds numbersthwi

a maximum around&sf = 50. This suggests that the clusters
are buffer-layer phenomena which should become negliéible
most of the logarithmic layer wheRe; is large enough, but this

is not necessarily so, and depends on the behaviop(f).

The projected area of each vortex cluster on the plane of the
wall is AA; ~ 5%, and for any p.d.f. decaying slower thap?

the largest clusters would be the ones covering most arda. Th
would for example be the case for the distributju{sy) ~ A;l,
which was suggested in [27] on similarity grounds. In our-sim
ulations the decay op(Ay) depends on the threshold used to
define the vortices, and there is little support for a setfilsir
distribution. But we are conscious of the limited extent of o
logarithmic layers, and the matter remains under invetiga

Global modes

The increase with the Reynolds number of the intensity of the
streamwise velocity was justified above by noting that tree pr
multiplied energy spectra are approximately flat in the long
wavelength regime, and that they become longeRasin-
creases. Since the total energy is the integral with regpect
log(Ax) of the premultiplied spectrum, and sinkgranges be-
tween limits which scale respectively in wall and in outeitsin

it follows thatu'+2 should increase as I¢g"™) = log(Re). This

is the dashed line drawn in figure 2.

The same argument does not hold when comparing flows at a
given value ofy/h. The shorter end of the energy spectrum
in the logarithmic and outer layers is the intersection & th
wake line (3) with the isotropic locusy = Az, which happens
atAx ~y. This is confirmed by the numerical spectra, as well
as by the experimental limits of the classikal spectrum [27].

The long-wavelength end is given by (5), and the range of the

10

Figure 7: Scaling of the total energy of the streamwise fluc-
tuations, as a function of the Reynolds numhgthh =0.4. O,
boundary layers; , channels® , pipes. Open symbols are lab-
oratory experiments, and closed ones are computatiens—,

U2~ 1+0(UC+2; -——— ,u* ~logRg [7].

)\Z/y

17

Figure 8: Premultiplied cospectra of the Reynold stresién t

logarithmic layer, as a function of/y. , y/h=01,;
-—--,y/h=015—— ,y/h=02. Re =934.
spectral integral is therefore

}\x,max/)\x,min ~ 4h2/y27 (6)

which is independent dRg. If the magnitude of the spectrum
scales withjf, arguments like this one allow us to estimate how
U2 depends ory/h, but they support the scaling of with ur.

On the other hand, the experimental and numerical evidence
compiled in figure 7 suggests that also in the the outer ldyeer t
scaling of the fluctuations witty fails to apply [7].

The classical argument for the scaling wfis that, since the
total Reynolds stress is given by the momentum equation (in a
channel) as(1—y/h), and since the stress has to be carried
by the produc{u’V'), the easiest assumption is that battand

V' scale withu;. It was however noted by Townsend [31] that
this argument does not apply to ‘inactive’ eddies whichyao
Reynolds stresses. We already found such eddies in the upper
edge of the buffer-layer spectra in figure 4, and it is cleamfr

the observation of the higher contours of the energy spactia

of the Reynolds stress cospectra in figure 5, that the loragpebst
widest eddies in the outer flow are also inactive.

There is a second argument that also supports the saaling
ur. Assume an eddy of the self-similar famiYnax ~ Ymin ~ V.
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Figure 9: Correlation height for individual Fourier moddstae
streamwise velocity. Contours akg,,/h = 0.6(0.1)0.9. The
kxkzEuu spectrum ay = h/2 is included for comparisorRe =
550.

If we think of the perturbation i as coming from the mixing

of the mean velocity profile, such as in the right-hand side of
figure 6, we can estimate the perturbation generated by such
an eddy as/ ~ U (Ymax) — U (Ymin), which in the logarithmic
layer is approximately [0g(Ymax/Ymin). This also scales in
wall units and, in conjunction with the argument in the poes
paragraph, suggests that the Reynolds stress is carridetin t
logarithmic layer by self-similar eddies. This is suppdrigy

the cospectra in figure 8, which collapse well in terms\ gy
near their active peak, while the collapse deteriorategHer
relatively-inactive shorter and longer wavelengths.

When the mixing argument is applied to attached modes, which
are correlated from the wall to a given heighit suggests that
those modes should scale wlithy) instead of withu;, espe-
cially if they are inactive. This argument would apply tothk
wider modes in the logarithmic layer, but for most of them the
experimental or numerical data is too scant to check theigred
tion.

There is however a set of modes in which the test can be carried
and for which there are results at high Reynolds numbers from
laboratory experiments. Consider the correlation coefficfor

a particular Fourier mode at two heights,

|(0(k, kzy)T* (ks kz, Y)) .
((|a(k, kz, Y)[2)(|0(kx, kz, ) [2))1/2

This is a real number between zero and one, which would be
equal to unity for ally andy’ if that particular mode where fully
correlated across the full channel. We can define a ‘coioglat
height’,

Cuu(kx Kz, ¥, )/) = (7)

-h

H2, (ky, ko) = /0 /0 " Gyl ®)

which characterizes the depth over which the particularieou
mode is correlated. In genetd},, increases as the wavelengths
become longer and wider (see figure 9) and, Xer=> 6h all

the modes are essentially correlated over the full halfioba
These global modes are particularly easy to analyse, becaus
they do not interfere with any shallower structures at threesa
scales. A reference to figure 5 shows that they carry little
Reynolds stress, and the previous argument suggests #yat th
should scale with the centreline veloclll, instead of withu,.
Also, because the high correlation region in figure 9 spanst mo
spanwise wavelengths, their intensity can be computed from
laboratory spectra, which usually do not have spanwisea-info
mation.
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Figure 10: Scaling of the energy in the ‘global’ modes< 6
Ax/h < 24, for numerical channels (solid symbols) and ex-
perimental boundary layers and pipes (open symbols).,
y/h=0.1;0,y/h=0.2;8,y/h=0.3. The dashed line goes
through the origin.

This scaling is tested in figure 10, which plots the energyén t
band 6< Ax/h < 24 as a function of the Reynolds number, and
at three wall distances. Besides the numerical channelg)|dt
contains data from experimental boundary layers [10] apdpi
[26]. The failure of the classical scaling is clear from thifie,
and the proposed scaling Wlﬂf works well.

We can now get back to the scaling failure of the total veloc-
ity fluctuations in figure 7. Since there is an active part @ th
spectrum which scales ax% and an inactive one which scales

like U2, we can expect that the total scalesids ~ 1+ GUJZ,
which is the solid straight line in the figure. A different bca
ing U ~ log(Re) was proposed in [7] to fit the data, and it is
also included in the figure. Even within the fairly wide range
of Reynolds numbers compiled in figure 7, both scalings dif-
fer little, and it is unlikely that they will ever be distinghed
through global measurements alone. They however predict di
ferent asymptotic behaviours at very large Reynolds nusmber
and observations like the present one on the scaling ofgbarti
spectral ranges offer the best hope of deciding which argtime
is correct.

Conclusions

We have briefly reviewed the present status of the underisigind
of the dynamics of turbulent flows near smooth walls, andrgive
rational explanations for several of the scaling failuretedted

in experiments. This is a subject that, like most othersibuu
lence, is not completely closed, but which has evolved indbie
two decades from empirical observations to relatively cehie
theoretical models. Itis also one of the first cases in tenze,
perhaps together with the structure of small-scale vaytiici
isotropic turbulence, in which the key technique respdaditr
cracking the problem has been the numerical simulationef th
flow.

The reason for the successes in the buffer layer is unddybted
that the Reynolds numbers of the important structures ave lo

and therefore easily accessible to computation, while rexpe

ments are difficult.

The study of the logarithmic layer, on the other hand, resgpuir
massive computations at realistic Reynolds numbers, which
only now are becoming available. It is in this area where the
cost of computations and of laboratory experiments havesto b
weighted against their respective advantages. It is pigtiake



that both will forever be complementary. Note that we have

used data from both sources whenever possible. But it is no
longer true that Reynolds number alone is what separates one

from the others.
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