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Abstract

The availability of high-quality numerical simulations, with
Reynolds numbers which are now in the range ofReτ = 2000,
and which will probably be extended toReτ ≈ 4000 in the near
future, have revitalized the study of turbulence near wallsin the
last decade. Simulations can now be used to study the dynamics
of the buffer and of the lower logarithmic layers in some detail,
and some of the results obtained in that way are reviewed here.
Particular attention is paid to the reasons for the failure of the
scaling of the turbulence intensities withuτ, which are traced to
different causes in the buffer layer and in the outer flow. While
in the buffer layer the cause seems to be the growing scale dis-
parity between the near-wall and outer-flow contributions,it is
shown that in the outer flow some spectral ranges scale with the
centreline velocity. The generation of the largest scales of the
streamwise velocity component in the logarithmic layer is also
studied, and shown to be consistent with the formation of large-
scale passive wakes of smaller individual ejections. The latter
are related to attached clusters of vortices extending fromthe
buffer region into the logarithmic layer.

Introduction

The study of turbulence near walls has experienced a renais-
sance in the last decade, largely because of the availability of
high-quality numerical simulations. The numerical Reynolds
numbers, now in the range ofReτ = 2000, allow for the first
time the study in some detail of the dynamics of the buffer and
of the lower logarithmic layers. The present and probable future
status of direct simulations of turbulent channels, and some of
the results obtained from them, are reviewed here.

Three issues are particularly addressed. Consider first thebuffer
and viscous layers. It has been known for some time that this
part of the flow is relatively independent of the flow above it
[17], and actually survives even when all the rotational fluctua-
tions are artificially removed abovey+ ≈ 60. This is in agree-
ment with the fact that most of the mean velocity difference,of
the turbulence production, and of the energy dissipation, reside
in this region, which therefore sees the outer flow as a relatively
weak perturbation of the local processes. These autonomous
dynamics have been discussed elsewhere [9, 11, 15, 16], and
will not be addressed here, but recent experimental resultssug-
gest that there are effects of the Reynolds number on the scal-
ing of buffer-layer quantities [7]. They can only come from
interactions with the outer flow, and they are also seen in sim-
ulations. We will review below some results obtained in the
last few years, concerning their mechanism and their location
in scale space.

The next question is the scaling of the structures both in the
buffer and in the logarithmic layer. It follows from the study
of the numerical energy spectra that the relation between the
width and the length of the energy-containing structures isnot
straightforward, in the sense that both length scales are not pro-
portional to each other, nor to the distance to the wall. Experi-

mental evidence for the latter lack of proportionality had already
been found in [12, 19], but it has only been through numerical
simulations that the former has been documented [2, 3, 14]. We
will discuss below what the problem is, and what its solution
appears to be.

Finally we address the question of the scaling of the veloc-
ity fluctuations in the logarithmic layer and in the outer layer.
The classical view is that all the velocity fluctuations in wall
flows should scale with the friction velocityuτ [30], but again
the experimental evidence suggests otherwise [7], and it had
already been noted in [31] that ‘inactive’ eddies, those notcar-
rying Reynolds stresses, could scale in some other way. We will
show that at least some eddies, those large enough to span the
whole thickness of the flow, scale with the flow velocity at the
centreline, and we will discuss the consequences that follow for
the behaviour of the overall turbulence intensities at veryhigh
Reynolds numbers.

We usex, y andz for the streamwise, wall-normal, and spanwise
coordinates, andu, v andw for the corresponding velocity com-
ponents. The half-height of the channel, the pipe radius, and the
boundary-layer thickness are denoted byh.

Numerical simulations

There should be by now little doubt that careful numerical sim-
ulations of the Navier–Stokes equations are just differentkinds
of experiments, and that there is no reason to expect them to
be less accurate than laboratory ones [23]. Some of their draw-
backs, such as the artificial nature of some boundary conditions,
are no worse than the artificial nature of the walls in wind tun-
nels and can, in both cases, be avoided by careful design. It
is also not always clear that what we simulate is exactly the
same thing that we would measure in the laboratory, but there
is no reason why it should be. Simulations and experiments
are equally valid idealizations against which to test theories and
designs.

There is also no doubt that, once a flow has been successfully
simulated, it can be observed more thoroughly than in a lab-
oratory experiment. The cost of carrying out a large simula-
tion is high, although not necessarily higher than that of build-
ing a large wind tunnel, but the instrumentation problems are
simpler, and almost any observation that can be imagined can
be made. While the results of laboratory experiments are of-
ten constrained by the instrumentation technology, those from
numerical simulations are mainly limited by the ability of the
researcher to ask the right questions.

Another advantage of simulations over laboratory experiments
is the ease with which they can be adapted to perform ‘con-
ceptual’ experiments, in which the equations of motion or the
boundary conditions are changed to, in effect, ‘take the system
apart’ [17]. This has always been a useful device in physics,
and conceptual experiments have often been used to constrain
physical theories by asking what would happen if a given ‘im-
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Figure 1: Evolution of direct channel simulations.• , peak
speeds of computers, in Mflops/s, as a function of the fabrica-
tion year. The two trend lines are for single- and multi-processor
systems. The two upper lines are for total flops in one day and in
six months of dedicated time at the computational speeds of the
parallel trend line.H are the estimated costs of the simulations
in table 1.

Reτ Box Year Points
180 4π×4π/3 1987 [21] 5 Mp
590 2π×π 1996 [24] 40 Mp
550 8π×4π 2001 [2] 600 Mp
950 8π×3π 2003 [3] 4 Gp
1900 π×π/2 2003 [3] 450 Mp
4,000 8π×3π 2005 130 Gp
10,000 8π×3π 2015 1.5 Tp

Table 1: Available and planned direct numerical simulations of
turbulent channels. The box refers to the spatial periodicity of
the spectral simulation contained in the table.

plausible’ modification were implemented. Think for example
of the concept of potential inviscid flow. For such exercisesto
be useful, however, we should be able to answer the question
that we have posed, and it is in that respect that many of the ide-
alized systems of classical physics differ from complex ones,
such as turbulence. While it might be possible with a pencil
and paper, and with a lot of imagination, to decide what hap-
pens when two observers try to synchronize their clocks under
certain conditions, the answer is often harder when trying to
decide the outcome of a particular modification to a turbulent
flow. Numerical simulations allow us to obtain answers to our
conceptual experiments.

While those are clear advantages of simulations over labora-
tory experiments, the argument over their relative merits has
often centred on the different question of which systems can
be studied with each technique. It is often claimed that experi-
ments can be run at higher Reynolds numbers than simulations.
This question was reviewed in [13], where it was argued that the
Reynolds number difference between laboratory and computa-
tion has been steadily eroding with the advances in computing
technology, and that in many respects both are now compara-
ble. This is particularly true when the magnitude of interest is
something more complicated than the turbulence intensities, or
even in some cases anything beyond the mean velocity profile.

In the particular case of turbulent channels, which will be the
main subject of this paper, the friction Reynolds numbers of

the early simulations atReτ = uτh/ν = 180 [21] have now been
multiplied by five [3]. A simulation atReτ ≈ 2000 is also avail-
able, although the size of its computational box is too smallto
trust the results anywhere except very near the wall. The avail-
able simulations are summarized in table 1, and they overlapthe
experimental range. There are few well-documented laboratory
channels atReτ > 1000, and the main problem in validating the
results of the simulations is now the lack of comparable experi-
mental data.

The cost of these simulations is plotted in figure 1 against the
historical and expected evolution of computer power. They
cluster around one CPU-day of the fastest machine available
at the time, showing that the barrier for larger simulationsis
more political than technological. None of the simulationsin
the figure were ran in the fastest available machine.

Two simulations still in the planning stage are included in table
1. The one atReτ = 4000 is at present in the advanced prepara-
tion phase, and will most probably be ready within the next two
years. The simulation atReτ = 104 is a more distant prospect,
but it holds a special place in the planing process. The two
main ‘intrinsic’ open problems in wall-bounded turbulenceare
the interaction between the inner and the outer layers, and the
dynamics of the logarithmic layer. Both require a sufficiently
large Reynolds number.

The length of the dominant structures in the buffer layer is about
1000 wall units [14], while that of the global modes in the outer
region is about five channel half-widths [2]. WhenReτ = 104,
the ratio between the two lengths is about 50, and probably large
enough to be considered infinite from the point of view of their
interaction. That Reynolds number also results in about a fac-
tor of ten between the upper and lower limits of the logarith-
mic layer [25]. Such a simulation can probably be considered
as ‘asymptotically large’ from the point of view of clarifying
the physics of wall-bounded flows at zero pressure gradient.It
should be ready in about a decade.

It may be interesting at this point to discuss the question of
the size of the computational box needed to simulate channels.
We will see below that there are very long structures in turbu-
lent wall-bounded flows, particularly for the streamwise veloc-
ity component, which contain a substantial fraction of the en-
ergy of the fluctuations. As long as the physics of those large
scales, and of their interactions with other parts of the flow, is
not completely understood, they have to be simulated to have
any confidence in the results. As we will see below, this under-
standing has been achieved only in part, and many of the result-
ing scaling laws are still in doubt. Any new simulation at large
Reynolds numbers, which is bound to be expensive and not eas-
ily repeated for some time, should use boxes large enough to
include them.

With this in mind, there are still many things that can be learned
from smaller boxes, in particular regarding the dynamics ofthe
smaller scales in the absence of the larger ones [16, 17]. Some-
thing that usually does not work, however, is to use smaller
computational boxes to save computer time. Consider for ex-
ample the simulations in table 1. It is our experience that boxes
in the order ofLx = 8π need to be run for about ten washouts
(10Lx/Uc) before the statistics of the larger scales are reason-
ably converged. Smaller boxes need to be run much longer, in
part to accumulate enough statistics at the intermediate scales,
and also because there is a tendency for the long Fourier modes
in the centre of the channel to become ‘frozen’, producing spu-
rious effects on the velocity fluctuation profiles which are not
necessarily small. The problem is that short periodic boxesdo
not really lack long scales, but merely treat them as being in-



finitely long. The scales are in the simulation, but their dynam-
ics are in general incorrect.

The box atReτ = 1880 in table 1, for example, had to be run for
several hundred washouts before its statistics could be consid-
ered moderately converged. Even then the mean velocity pro-
file cannot be trusted above the logarithmic layer. The same
is true of the somewhat larger box atReτ = 590, which also
had to be run for hundreds of washouts before converging, and
which even so retained a residual asymmetry in the velocity pro-
file at the end of the simulation [24, private communication].
Our experience with intermediate boxes of size 4π×2π is that
they have to be run for about 80− 100 washouts before the
statistics converge in the outer region. These long integration
times negate much of the gain in computer time which could be
expected from using smaller boxes (although obviously not in
memory usage), and they do so at the expense of decreasing the
quality of the results. The consequence is that it usually pays
to run the largest computational box compatible with the com-
puter resources at hand, and that the main reason to use smaller
boxes should be to simplify the physics, rather than to shorten
the simulation time.

The near-wall layer

It is well known [30] that wall-bounded turbulence over smooth
walls can be described to a good approximation in terms of two
sets of scaling parameters. Viscosity is important near thewall,
and the length and velocity scales in that region are constructed
with the kinematic viscosityν and with the friction velocityuτ.
Everything in that region is expected to scale in wall units.

Far from the wall the velocity also scales withuτ, but the length
scale is the flow thicknessh. In the classical approximation the
logarithmic region extends between the inner and the outer re-
gions, because the only possible length scale is theny itself [30].
The velocity in the intermediate layer follows approximately

U+ = κ−1 logy+ +A. (1)

The viscous and buffer layers are extremely important for the
flow as a whole. The ratio between the inner and outer length
scales is the friction Reynolds number,Reτ, which ranges from
200 for barely turbulent flows toReτ = 5× 105 for large wa-
ter pipes. The near-wall layer in the latter,y+ . 150, is only
about 3× 10−4 times the pipe radius, but it follows from (1)
that, even in that case, 40% of the velocity drop takes place
below y+ = 50. Turbulence is characterized by the expulsion
towards the small scales of the energy dissipation, away from
the large energy-containing eddies. In wall-bounded flows that
separation occurs not only in scale space for the velocity fluc-
tuations, but also in the mean velocity profile. The singularities
are expelled both from the large scales, and from the centre of
the flow towards the wall.

Because of this singular nature, the near-wall layer is not only
important for the rest of the flow, but it is also essentially in-
dependent from it. That was for example shown by numerical
experiments with ‘autonomous’ simulations [17] in which the
outer flow was artificially removed above a certain wall distance
δ. The near-wall dynamics were unaffected as long asδ+ & 60.

Understanding the structure of this part of the flow has practical
implications. The velocity at the centreline,U+

c = (2/cf )
1/2,

determines the friction coefficientcf when expressed in wall
units, and we have seen than a large fraction of that velocity
resides in the buffer layer. It is for this reason that the layer
below y+ ≈ 100 has been intensively studied. It is dominated
by coherent streaks of the streamwise velocity and by quasi-
streamwise vortices. The former are an irregular array of long
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Figure 2: Maximum intensity of the streamwise velocity fluc-
tuations as a function of the Reynolds number. In all cases
the maximum is achieved neary+ = 15. � , boundary layers;
◦ , channels;△ , pipes. Open symbols are laboratory exper-
iments, and closed ones are computations. The dashed line is
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Figure 3: Longitudinal energy spectrakxEuu/u2
τ as a function

of the wavelengthλx = 2π/kx, and of the Reynolds number, at
y+ = 20. Each horizontal line of the shaded area corresponds
to a different Reynolds number. The upper block are laboratory
boundary layers [10]. The lower one are numerical channels
[2, 3]. The dashed line isλx = 10h, and the solid one isλ+

x =
1000. Adapted from [14].

(x+ ≈ 1000) sinuous alternating streamwise jets superimposed
on the mean shear, with an average spanwise separation of the
order of z+ ≈ 100 [29]. The quasi-streamwise vortices are
slightly tilted away from the wall [11], and stay in the near-
wall region only forx+ ≈ 200. Several vortices are associated
with each streak, with a longitudinal spacing of the order of
x+ ≈ 400. The basic cell of wall-parallel dimensions 400×100
wall units was also identified in [16] as the smallest dynamical
periodic box able to self-sustain turbulence in the neighbour-
hood of the wall.

The intensity of the streamwise velocity fluctuations reaches a
maximum aroundy+ ≈ 15, and classical theory implies that the
maximum intensity should scale in wall units. It is clear from
figure 2 that this is not true, and that the increasing trend is
present both in the experimental and in the numerical results.
This anomalous scaling is accompanied by other scaling failures
in the buffer region. The most obvious is the form of the pre-
multiplied energy spectrum, which was shown in [10] to contain
two peaks, a short one at a streamwise wavelengthλ+

x ≈ 1000,
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Figure 4: Two-dimensional spectral energy densities aty+ = 16,
in terms of the streamwise and spanwise wavelengths. Shaded
contours are an autonomous flow [14] masked abovey+ = 60.
Lines are full channels [3]. , Reτ = 550; , Reτ =
934. The solid diagonal line is horizontal isotropy,λx = λz,

and the dashed one isλz ∼ λ1/3
x . The dotted rectangle is the

approximate size of the minimal self-sustaining flow unit [16].
(a) kxkzEuu/u2

τ . (b) −kxkzEuv/u2
τ .

independent ofReτ, and a long one that scales in outer units as
λx ≈ 10h. A compilation of experimental and numerical spectra
is found in figure 3. Sinceu′2 is the integral of the energy spec-
trum, a nonclassical scaling of the latter almost automatically
implies a similar nonclassical behaviour of the former.

The Reynolds-number dependence of the large scales can be
also be seen in figure 4, which shows two-dimensional energy
densities in the near-wall region. These spectra have at least
three regions. On the lower left corner, at scales of the order
of the minimum flow unit mentioned above, the two Reynolds
numbers in the figure collapse well in wall units, and so does the
autonomous flow that is also included. These are the structures
involved in the nonlinear turbulence regeneration cycle, and
they are present both in the spectrum of the energy and in that
of the Reynolds stress. Both spectra continue towards longer
wavelengths along a ridge with the anomalous power scaling

λz ∼ λ1/3
z , which is present in the three flows. At the Reynolds

numbers of the present simulations this spectral range alsocol-
lapses in wall units, but the autonomous flow behaves differ-
ently, and it is not clear from the present data whether the ridge
will become longer at higher Reynolds numbers, or whether the
present data are already asymptotic. It was shown in [14] that
the structures in this ridge are passive, in the sense that they are
not involved in a two-way cycle. Their wall-normal velocityis

needed to create the streamwise-velocity structures, but not the
other way around. It was also shown in [14] that the geometric
relation between the smallerv structures in the minimal region
and the longeru-structures along the ridge is consistent with the
latter being wakes of the former. Their scaling is also consistent
with this explanation. The similarity solution for wakes spread-
ing in a simple shear under the action of a constant viscosity,
both of which are good approximations near the wall, is

u∼ u(y/x1/3, z/x1/3). (2)

Further support for the wake model will be provided in the next
section.

The spectral region in which the three flows disagree most
clearly is the upper right-hand corner, where the spectrum of
the higher Reynolds number flow is longer and wider than that
of the lower one. This component is completely absent in the
autonomous flow, and is located aroundλx×λz = 10h×h. Its
length thus agrees with the long-wavelength end of the spectra
in figure 3. It is also the location of the ‘global’ modes identi-
fied in [2], which span the whole channel half-height and which
will be the subject of a later section.

This strongly suggests that the growth of the intensity peakin
figure 2 is due to large-scale outer flow structures. Note that,
contrary to the other two spectral regions, this component is
not present in the Reynolds-stress cospectrum, and is therefore
‘inactive’ in the sense of Townsend [31]. It has long been un-
derstood that, because the Reynolds stress definesuτ, the most
likely reason for the failure of the wall scaling is the presence
of inactive motions [31], and this is confirmed by the excellent
collapse of the two full-channel cospectra in figure 4(b).

Note however that this correspondence is not automatic. The
edge of the energy spectrum in figure 4(a) which is closest to
the isotropic diagonal is missing in the cospectrum, but it scales
very well in wall units.

Wakes in the logarithmic region

As we move away from the wall, the form of the energy spec-
trum changes [2, 3]. Two spectra are shown in figure 5. The
ridge of ‘wakes’ is also present in them, but it follows

λz ≈ (yλx)
1/2, (3)

rather than a cube-root law found in the viscous layer. This
is also consistent with the model of a wake left by a compact
structure, because in the logarithmic and outer layer the velocity
is almost constant, and the diffusion of the wake is due to an
eddy viscosity which, on dimensional grounds, isνT ≈ uτy. The
similarity solution is then [3]

u∼ u(y/x, z/(yx)1/2). (4)

For wavelengths shorter thanλx ≈ y the spectrum is bounded
by (3) and by the line of horizontal isotropy,λz = λx, but longer
structures are always anisotropic and follow the wake ridge. It
was shown in [2, 3] that the structures of the wall-normal ve-
locity v are effectively confined to the ‘isotropic’ regionλx < y.
Those eddies are detached from the wall, in the sense that the
correlation of individual Fourier modes between the logarithmic
and the buffer layer is very small. The height over which those
correlations are large increases as the structures become longer.
The eddies touch the wall whenλx ≈ y, and the attached eddies
beyond that limit are the ones that cluster along the wake ridge.

The nature of the structures generating the wakes is discussed in
[4], which studies the vorticity structures in the buffer and loga-
rithmic layers. Vortices are defined as being formed by points in
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Figure 5: Two-dimensional spectral energy densitykxkzE/u2
τ .
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which the discriminantD of the velocity gradient tensor is larger
than a properly-defined threshold [6]. Connected sets of such
points are collected into individual vortex clusters, which break
naturally into two distinct groups according to whether their
lowest points are above or below a critical level aroundy+ ≈ 20.
We will call the latter group attached and the former detached.
The most interesting clusters are those attached to the walland
reaching into the logarithmic layer, abovey+ = 100. When each
of them is inscribed into a parallelepipedal box aligned to the
coordinate directions, the boxes are self-similar, with dimen-
sions∆z ≈ 1.5∆y and∆x ≈ 3∆y. Note that for attached clusters
it makes sense to associate∆y with the heighty, becauseymin is
small. When this is done, and when∆x and∆z are also equated
to the streamwise and spanwise wavelengths, the dimensionsof
the bounding boxes roughly coincide with the location of the
spectral peak for the wall-normal velocityv. The vortices them-

selves appear to be arranged as surfaces or shells within the
boxes; while the volume of the bounding box increases as∆3

y,
the volume contained in points classified as vortices increases
only as∆2

y.

A conditionally-averaged flow field, based on the centres of the
vortex boxes, and scaled with their vertical dimensions, shows
a strongv ejection surrounded by two counterrotating vortices,
as in a classical hairpin. The antisymmetry is only statistical
and, as in the case of the buffer-layer vortices [28], there is little
evidence for symmetry in individual vortex clusters.

When the conditionally-averaged flow field is extended down-
and up-stream from the location of the vortex box, the result
is that in figure 6. In thex− y streamwise plane bisecting the
mean location of the box, the presence of a streamwise-velocity
structure linked to the vortex cluster is clear. Its location with
respect to the cluster is consistent with that of a wake. If we
assume that the cluster is advected with the mean velocity atits
centre of gravity, the flow closer to the wall is slower than the
cluster, and the wake isbehindthe cluster. Above the centre of
gravity, the mean flow is faster than the vortices, and the wake
is in front of the cluster. The averaged vortical structure of the
ramp in the transverse plane is shown in the right part of fig-
ure 6. It has two counterrotating vortices which are much larger
than the size of the original vortex packet, and which are remi-
niscent of the downstream structure of the wake of a transverse
jet in a boundary layer [8].

Similar ramp-vortex structures have been observed by previ-
ous investigators [1, 5], with geometric characteristics similar
to those found here, but the present interpretation of theirre-
lation with the vortex packets is, to our knowledge, new. The
results in [4] suggest that the shear layer which defines the top
of the ramp is associated with detached vortex clusters, while
the attached clusters are only found at the ramp origin. Notefor
example the absence of any coherent flow structure upstream of
the vortex box in figure 6(a), except in the buffer layer. When
the conditioned flow field is computed for the detached vortex
clusters, the low-speed region extends symmetrically upstream
and downstream of the box.

It is interesting to note that the above description is not restricted
to ‘real’ vortices, but that it still holds when the flow is fil-
tered to larger scales (up to 200× 40× 100 wall units in our
experiments). Individual vortices are then smoothed, and what
remains is only the integrated circulation over fairly large vol-
umes. The velocity perturbations due to the ramps are of the or-
der ofuτ, and the total projected surface of the boxes bounding
the wakes is enough to cover the whole wall with some over-
lap. The perturbation due to the wakes is therefore a substantial
fraction of the total perturbation energy in the channel, ascould
be deduced from the spectra in figure 5.



Those spectra suggest that the wakes widen along the ridge (3)
until λz ≈ 2h. This effectively determines the longest wave-
length in the spectrum, which is

λx,max/h≈ 4h/y. (5)

This limit is longest at the bottom of the logarithmic layer,
wherey+ ≈ 100 andλx,max/h ≈ Reτ/20. These are very long
structures that, even taking into account possible numerical fac-
tors, point to hundreds of boundary-layer thicknesses at high
Reynolds numbers. Spectral peaks of the order of 20h have
been documented in experiments [12, 19], and they are probably
limited by the length of the experimental records. The present
simulations only reach toλx ≈ 25h and, although longer to our
knowledge than any other available simulation, they are not
long enough to settle the matter. The one-dimensional stream-
wise premultiplied velocity spectra at the bottom of their log-
arithmic layers are still essentially flat at their longest wave-
lengths, as seen in figure 5(a). On the other hand, numerical
experiments with shorter simulation boxes show very littledif-
ference in the part of the spectrum that is resolved by the sim-
ulations [3], suggesting that those very long structures are es-
sentially passive and do not feed into the shorter ones. We have
already noted that a short simulation box models long scales
as being infinitely long, and the previous results suggest that,
given enough time to randomize, structures longer than about
5h behave as if they were dynamically infinite.

The shortening of the spectra above the lower logarithmic layer
predicted by (5) had been previous noted experimentally, al-
though without explanation [12, 19, 22].

An interesting question is whether the vortex clusters and the
ramps discussed here are features of the whole logarithmic
layer, or just of its lower edge. The probability density function
p(∆y) for the dimensions of the attached vortex clusters col-
lapses well in wall units for different Reynolds numbers, with
a maximum around∆+

y = 50. This suggests that the clusters
are buffer-layer phenomena which should become negligiblefor
most of the logarithmic layer whenReτ is large enough, but this
is not necessarily so, and depends on the behaviour ofp(∆y).
The projected area of each vortex cluster on the plane of the
wall is ∆x∆z≈ 5∆2

y, and for any p.d.f. decaying slower than∆−2
y

the largest clusters would be the ones covering most area. This
would for example be the case for the distributionp(∆y)∼ ∆−1

y ,
which was suggested in [27] on similarity grounds. In our sim-
ulations the decay ofp(∆y) depends on the threshold used to
define the vortices, and there is little support for a self-similar
distribution. But we are conscious of the limited extent of our
logarithmic layers, and the matter remains under investigation.

Global modes

The increase with the Reynolds number of the intensity of the
streamwise velocity was justified above by noting that the pre-
multiplied energy spectra are approximately flat in the long-
wavelength regime, and that they become longer asReτ in-
creases. Since the total energy is the integral with respectto
log(λx) of the premultiplied spectrum, and sinceλx ranges be-
tween limits which scale respectively in wall and in outer units,
it follows thatu′+2 should increase as log(h+) = log(Reτ). This
is the dashed line drawn in figure 2.

The same argument does not hold when comparing flows at a
given value ofy/h. The shorter end of the energy spectrum
in the logarithmic and outer layers is the intersection of the
wake line (3) with the isotropic locusλx = λz, which happens
at λx ≈ y. This is confirmed by the numerical spectra, as well
as by the experimental limits of the classicalk−1 spectrum [27].
The long-wavelength end is given by (5), and the range of the
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, y/h = 0.15; , y/h = 0.2. Reτ = 934.

spectral integral is therefore

λx,max/λx,min ≈ 4h2/y2, (6)

which is independent ofReτ. If the magnitude of the spectrum
scales withu2

τ , arguments like this one allow us to estimate how
u′2 depends ony/h, but they support the scaling ofu′ with uτ.

On the other hand, the experimental and numerical evidence
compiled in figure 7 suggests that also in the the outer layer the
scaling of the fluctuations withuτ fails to apply [7].

The classical argument for the scaling ofu′ is that, since the
total Reynolds stress is given by the momentum equation (in a
channel) asu2

τ(1− y/h), and since the stress has to be carried
by the product〈u′v′〉, the easiest assumption is that bothu′ and
v′ scale withuτ. It was however noted by Townsend [31] that
this argument does not apply to ‘inactive’ eddies which carry no
Reynolds stresses. We already found such eddies in the upper
edge of the buffer-layer spectra in figure 4, and it is clear from
the observation of the higher contours of the energy spectraand
of the Reynolds stress cospectra in figure 5, that the longestand
widest eddies in the outer flow are also inactive.

There is a second argument that also supports the scalingu′ ∼
uτ. Assume an eddy of the self-similar family,ymax∼ ymin ∼ y.
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If we think of the perturbation inu as coming from the mixing
of the mean velocity profile, such as in the right-hand side of
figure 6, we can estimate the perturbation generated by such
an eddy asu′ ≈ U(ymax)−U(ymin), which in the logarithmic
layer is approximatelyuτ log(ymax/ymin). This also scales in
wall units and, in conjunction with the argument in the previous
paragraph, suggests that the Reynolds stress is carried in the
logarithmic layer by self-similar eddies. This is supported by
the cospectra in figure 8, which collapse well in terms ofλ/y
near their active peak, while the collapse deteriorates forthe
relatively-inactive shorter and longer wavelengths.

When the mixing argument is applied to attached modes, which
are correlated from the wall to a given heighty, it suggests that
those modes should scale withU(y) instead of withuτ, espe-
cially if they are inactive. This argument would apply to allthe
wider modes in the logarithmic layer, but for most of them the
experimental or numerical data is too scant to check the predic-
tion.

There is however a set of modes in which the test can be carried,
and for which there are results at high Reynolds numbers from
laboratory experiments. Consider the correlation coefficient for
a particular Fourier modêu at two heights,

Cuu(kx, kz, y, y′) =
|〈û(kx, kzy)û ∗(kx, kz, y′)〉|

(〈|û(kx, kz, y)|2〉〈|û(kx, kz, y′)|2〉)1/2
. (7)

This is a real number between zero and one, which would be
equal to unity for ally andy′ if that particular mode where fully
correlated across the full channel. We can define a ‘correlation
height’,

H2
uu(kx, kz) =

∫ h

0

∫ h

0
Cuudydy′, (8)

which characterizes the depth over which the particular Fourier
mode is correlated. In generalHuu increases as the wavelengths
become longer and wider (see figure 9) and, forλx & 6h all
the modes are essentially correlated over the full half-channel.
These global modes are particularly easy to analyse, because
they do not interfere with any shallower structures at the same
scales. A reference to figure 5 shows that they carry little
Reynolds stress, and the previous argument suggests that they
should scale with the centreline velocityUc, instead of withuτ.
Also, because the high correlation region in figure 9 spans most
spanwise wavelengths, their intensity can be computed from
laboratory spectra, which usually do not have spanwise infor-
mation.
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λx/h < 24, for numerical channels (solid symbols) and ex-
perimental boundary layers and pipes (open symbols).△ ,
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through the origin.

This scaling is tested in figure 10, which plots the energy in the
band 6< λx/h < 24 as a function of the Reynolds number, and
at three wall distances. Besides the numerical channels, the plot
contains data from experimental boundary layers [10] and pipes
[26]. The failure of the classical scaling is clear from the figure,
and the proposed scaling withU2

c works well.

We can now get back to the scaling failure of the total veloc-
ity fluctuations in figure 7. Since there is an active part of the
spectrum which scales asu2

τ , and an inactive one which scales

like U2
c , we can expect that the total scales asu′+2

∼ 1+αU+
c

2,
which is the solid straight line in the figure. A different scal-
ing u′ ∼ log(Reτ) was proposed in [7] to fit the data, and it is
also included in the figure. Even within the fairly wide range
of Reynolds numbers compiled in figure 7, both scalings dif-
fer little, and it is unlikely that they will ever be distinguished
through global measurements alone. They however predict dif-
ferent asymptotic behaviours at very large Reynolds numbers,
and observations like the present one on the scaling of partial
spectral ranges offer the best hope of deciding which argument
is correct.

Conclusions

We have briefly reviewed the present status of the understanding
of the dynamics of turbulent flows near smooth walls, and given
rational explanations for several of the scaling failures detected
in experiments. This is a subject that, like most others in turbu-
lence, is not completely closed, but which has evolved in thelast
two decades from empirical observations to relatively coherent
theoretical models. It is also one of the first cases in turbulence,
perhaps together with the structure of small-scale vorticity in
isotropic turbulence, in which the key technique responsible for
cracking the problem has been the numerical simulation of the
flow.

The reason for the successes in the buffer layer is undoubtedly
that the Reynolds numbers of the important structures are low,
and therefore easily accessible to computation, while experi-
ments are difficult.

The study of the logarithmic layer, on the other hand, requires
massive computations at realistic Reynolds numbers, which
only now are becoming available. It is in this area where the
cost of computations and of laboratory experiments have to be
weighted against their respective advantages. It is probably true



that both will forever be complementary. Note that we have
used data from both sources whenever possible. But it is no
longer true that Reynolds number alone is what separates ones
from the others.
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