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Abstract

We provide a solution to inviscid steady exchange flow between
continuously stratified reservoirs, where it is assumed that the
flow in each direction is independently self-similar. The solu-
tion requires knowledge only of the two reservoirs stratifica-
tions and an imposed net barotropic through flow, and includes
regions of stagnant fluid which separate two counter-flowing,
stably stratified layers. It is argued that these stagnant, or in-
active layers, may play a role in oceanic and geophysical flows,
but are inherently difficult to observe in field measurements.

Introduction

Density driven exchange flow through a channel connecting two
reservoirs occurs in many geophysical systems, in particular
between ocean basins, between semi-enclosed seas and the open
ocean, and at the mouth of estuaries. To first order, a solution
for bi-directional exchange can be obtained by assuming a two-
layer structure in the flow [1, 2, 7]. The two-layer hydraulic
solution can be used to give a first order prediction of flow
through a channel, assuming that the end reservoirs are homo-
geneous and that the fluid is inviscid, hydrostatic, non-rotating
and incompressible. However geophysical flows are invariably
more complicated than the two-layer theory. Here we present
the results of a study into the influence of stable stratification in
the reservoirs upon exchange flows.

Continuously stratified internal hydraulics was investigated by
Killworth [5] for the case of uni-directional flow. In appendix A
of that paper it was demonstrated that if inviscid bi-directional
exchange between stratified reservoirs were to occur, then the
vertical position of the streamline dividing the two counter-
flowing regions can only occupy one position in the vertical: it
must be flat everywhere. This result breaks down in two cases;
first, when the density coordinates are discontinuous (that is,
when the vertical gradient in density is zero) and second, when
there is a discontinuity in density at the dividing streamline.

Engqvist [3] used a multi-layer formulation to include strati-
fication into bi-directional exchange flows through a contrac-
tion. The multiple layers are divided into left- and right-flowing
groups and if these two groups of active layers are separated by
a central layer which has zero velocity, then the problem can
be solved. The central stagnant layer has the effect of decoup-
ling the two groups of layers so that control conditions for each
group of layers independently satisfies Wood’s [6] criteria for
control of the selective withdrawal problem.

Motivated by the result of Killworth [5] we have investigated
the problem of flow through a flat-bottomed contracting chan-
nel using analytical techniques and a two-dimensional numer-
ical model. We extend Engqvist’s [3] layered solution to con-
tinuously stratified flow. In addition we show a solution where
the two active layers are allowed to make contact at one point.
We proceed test this theory against the numerical model.

Analytical model

The selective withdrawal problem

The derivation of selective withdrawal of an inviscid fluid from
a stratified reservoir was originally due to Wood [6]. One as-
sumes a single layer flow in which the reservoir density profiles
and channel shape is known. The linear Bernoulli function for
a Boussinesq fluid is written

B(x,z) =
p+ρgz

ρ0
, (1)

wherex is the horizontal coordinate,z denotes height,g accel-
eration due to gravity,ρ density,ρ0 the reference density andp
pressure. Defineη, the upstream height coordinate which fol-
lows streamlines (so that in the reservoirz= η), and note that
density conservation implies thatρ = ρ(η) only. Conservation
of energy along a streamline is then simply

1
2u2 +B = B∞, (2)

whereu is horizontal velocity andB∞(η) is the Bernoulli func-
tion in the upstream reservoir (whereu = 0).

Conservation of volume along a streamline can be written

ubzη = Q(η), (3)

whereb(x) is the channel width andQ is the flux along the
streamline. Equations (2) and (3) then allow solution of the
selective withdrawal problem.

These equations are now applied to the withdrawal of a stably
stratified fluid (with total upstream depthh) through a contract-
ing channel. The boundary conditions on the flowing layer in-
clude a solid surface on the lower boundary wherez = 0, and
a free upper surface with a density jumpδρ. We assume that
flow within the layer is self-similar [6], or in other words the
height and energy of a streamline can be separated intox- and
η-dependent parts:

z(x,η) = α(x)η, (4)

B(x,η) = α(x)B∞(η). (5)

The factorα(x) describes the reduction in height of a streamline
from the upstream reservoir conditions.

The assumption of self-similarity allow us to write down a solu-
tion to this problem. The horizontal velocityu can be deduced
from (2), and substituted into (3) to obtain

b(x)α(x)(1−α(x))1/2 =
Q(η)

(2B∞(η))1/2
. (6)

The left hand side of (6) depends only uponx, while the right
hand side is a function ofη, implying that both sides are con-
stant. Thex-derivative of (6) gives

1
b

db
dx

=
1
α

dα
dx

(
3α−2

2(1−α)

)
. (7)
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Figure 1: Schematic of stratified exchange flow. (a) Contracting
channel in plan view; (b) case C1; Engqvist’s solution for two
decoupled layers separated by a minimum distance of∆h; (c)
case C2; solution where flowing layers touch at one (and only
one) point. In both cases upstream stratification for each layer,
and upstream height coordinate are known.

When there is a minimum inb(x), then eitherdα/dx = 0 or
α = 2/3. The latter case was defined by Wood [6] as a point of
hydraulic control, which enables us to find velocity and density
everywhere provided that the withdrawal heighth is known.

Application of self-similar flow to bi-directional exchange

We now apply Wood’s self-similar solution to exchange flows,
where we have two stably stratified reservoirs at either end of a
channel which has a simple minimum in width. Two cases are
considered, as depicted in figure 1. In both examples we allow
for two active layers flowing in opposite directions, and use two
upstream vertical coordinates (η1 for the upper layer, andη2
for the lower layer). The first scenario (case C1, figure 1(b))
is simply the continuous extension of the layered solution pro-
posed by Engqvist [3], and we therefore refer to it as Engqvist’s
solution. In this solution there are two active layers which are
divided by a stagnant, or inactive region in which we assume
that vertical gradients of both velocity and density are zero. At
some point in the channel the stagnant region has a minimum
thickness which we call∆h. For this case we expect the density
jump which bounds the flowing layers,δρ, to be zero.

In the second case (C2, figure 1(c)), the two flowing layers
touch at a single point. This is analogous to Engqvist’s solu-
tion with ∆h = 0, andδρ finite. The inactive region still exists
in this solution, and is of finite thickness throughout the length
of the channel except for the point where the layers touch.

The solution of these equations requires knowledge of the up-
stream withdrawal heighthi for each layer. We have several
restrictions which allow us to calculate these heights, namely
that the two layers are closest at some pointx0

α1(x0)h1 +α2(x0)h2 = 1−∆h, (8)

(where all heights have been nondimensionalised by the total
heightH of the channel). In addition there are conditions on the
density of the streamlines bounding the active layers, namely

(C1) : ρ1(h1) = ρ2(h2) δρ = 0, (9a)

(C2) : ∆h = 0 δρ =
ρ2(h2)−ρ1(h1)

2
, (9b)

where we have assumed that stagnant fluid has density which is
the half-way between the densities on the streamline bounding
either active layer.

One more condition on layer heights is required to close this
problem. This condition is a specified barotropic fluxq0
through the channel. For the cases shown here, we retain sym-
metry, so thatq0 = 0, and reservoir stratifications are linear and
symmetric (although more general solutions are possible via it-
erative methods [4]). Because of this symmetry, the pointx0 is
found at the centre of the channel,αi(x0) = 2

3 , h1 = h2 and (8)
becomes

∆h = 1− 4
3hi . (10)

This is sufficient to close the problem.

Comparisons

We now test the theory (and, by implication, the self-similar as-
sumption) by simulating stratified exchange flows with a hydro-
static 2-dimensional numerical model (see [4] for details). We
compare the numerical and analytical solutions, to determine
whether the assumption of self-similarity and the derived solu-
tion provide a suitable description of stratified exchange flows.
In comparing the two solutions, we are primarily interested in
whether the self-similar solution is selected by the numerical
simulation, but note that we expect to see some differences due
to the role of diffusion and viscosity in the simulations. Thus
we anticipate that the numerical solution will be more diffuse,
particularly close to the edge of the active layers, where dis-
continuities in velocity and density gradients are present in the
analytical model.

In the two cases presented, both reservoirs are linearly stratified
with the same density gradient (described by the top to bottom
density differenceδV ), but the mean density of each reservoir
is offset by a small amount (the horizontal density difference
beingδH ). The ratio of vertical to horizontal density differences
rρ = δV

δH
governs whether solution C1 or C2 will be selected. For

large values ofrρ the stratification in the reservoirs is strong and
solution C1 is expected. For smallrρ solution C2 is possible.

Case C1

The analytical flow field is shown in figure 2(a) for the case
rρ = 4. The numerical simulation, shown in panel (b), appears
to be qualitatively similar; both solutions show anti-symmetric
layers which accelerate through the contraction. A region of
zero (or small) velocities divides the two flowing layers. The
two lower panels in this diagram show the differences between
the numerical and analytical solutions for the density (c) and
velocity (d) fields as a percentage of the range in density and ve-
locity respectively. These diagrams show that, to first order, the
assumption of self-similarity applies in the numerical solution.
Within the active layers the differences between the two solu-
tions are generally very small (< 3%). Self-similarity deteri-
orates with distance along the channel, which is expected from
the impact of diffusion and viscosity in the numerical solution.

The largest differences between the numerical and analytical
solutions (10–15%) can be seen at the edge of the flowing lay-
ers, and within the inactive regions. The analytical solution pre-
dicts a discontinuity in the velocity gradient at the edge of the
flowing layers, so that the diffusive flux in the numerical solu-
tion is expected to be large. Viscosity thus acts to thin the stag-
nant region in the centre of the channel (nearx/L = 0) so that
it might appear from the numerical solution that the stagnant
region does not extend to the centre of the channel. The velocit-
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Figure 2: Engqvist’s solution (case C1) withrρ = 4 andq0 = 0. Isopycnals (contours) and velocity (vectors) for (a) the self-similar
analytical solution; (b) numerical simulations. (c) Difference in density and (d) difference in horizontal velocity.

ies in this region are small compared to velocities in the active
layers, but the effects of recirculation can be seen in the density
field. In fact, the largest errors in the density field are due to
these recirculations, which produce a statically unstable density
profile in the inactive parts of the flow. These unstable regions
are allowed to develop, as the numerical convection routine is
turned off. It is shown in Hogg and Killworth [4] that the addi-
tion of convection removes the unstable density fields without
altering flow in the active layers.

Case C2

A more stringent test of the self-similarity assumption is the
case where stratification is further weakened, as shown in fig-
ure 3 so that the analytical solution requires that the layers meet
at a point and the density jump,δρ is finite. The implication of
this solution is that some fluid from (say) reservoir 2 is dense
enough that it might be exchanged, but that the requirement for
self-similar flow, in combination with the existence of flow in
layer 1, acts to block the passage of this dense fluid. The data
shown in figure 3 supports the hypothesis that self-similar flow
occurs in this case. This can be seen by the small differences
( < 5%) within the two flowing layers. In this case there are dis-
continuities in both density and velocity at the edges of the flow-
ing layers in the analytical solution. The result is that diffusion
is large in the numerical solution so that differences between
numerical and analytical predictions are as great as 20% at the
edges of the layers, and also acts to reduce the total transport of
each layer.

The analytical solution in figure 3 includes a finite width stag-
nant region everywhere except atx = 0. However the numer-
ical solution (figure 3(b)) shows that the stagnant region is only
observable there towards either end of the channel. This high-
lights the role of viscosity in thinning the stagnant region. One
can infer from these simulations, which use the minimum vis-

cosity necessary for stability, that stagnant layers are unlikely
to be observed in geophysical flows with reasonable values of
viscosity. Nonetheless, the importance of self-similarity in the
simulated flow indicates the relevance of the solution presented
here as an estimate of exchange flux.

Discussion

We have presented a method of calculating flow between strat-
ified reservoirs assuming that flow within each of two active
layers is self-similar. The simplification yielded by the assump-
tion of self-similarity allows us to solve analytically for flow in
both layers, producing a solution which predicts that parts of the
fluid column are inactive. It is these inactive or stagnant regions
which allow us to overcome the paradox raised by Killworth
[5]. In that paper it was shown that if bi-directional stratified
exchange flow were to occur, then the zero-velocity streamline
can only occupy one vertical position. The self-similar solutions
bypass this condition because the zero streamline(s) occur in re-
gions of the flow where there is no vertical gradient in density.

We have proposed two self-similar cases which are solutions for
stratified bi-directional flow through a flat-bottomed contracting
channel. Confirmation of the solutions are difficult. The theory
described here is inviscid by necessity, and yet we are using it as
a theoretical model to describe flows which will always feel the
effect of viscosity. This is true for observed geophysical flows,
laboratory models and numerical simulations. Numerical sim-
ulation allows the greatest scope for comparison, since we can
run the model such that viscosity and diffusion are minimised.
These comparisons show the first order effect that viscosity and
diffusion have upon the flow, and that the major elements of the
theoretical solution can be identified in the simulated flows.

In the examples shown, the inactive regions are thinned by
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Figure 3: Case C2 usingrρ = 1 andq0 = 0. Panels as for figure 2.

the transfer of momentum from the neighbouring active layers.
This acts to mask the existence of the stagnant regions in the
viscous case, and provides an explanation as to why the self-
similar solution to stratified exchange flows has not been con-
sidered before as a general solution to this problem. There is
unlikely to be any observational evidence indicating that a stag-
nant region plays a role in dynamic flows.

The stagnant layers which are specified in these analytical solu-
tions present two difficulties. Firstly there is the question of how
they form, and secondly how they connect to reservoir condi-
tions. The former question presents little difficulty for case C1,
where the stagnant layer is constrained in density by the fact that
the bounding densities of the two active layers are equal. How-
ever, for case C2 we have (somewhat arbitrarily) chosen the
stagnant layers to have density which is intermediate between
the two bounding densities. It is important to stress that this
density cannot be achieved by mixing in our inviscid solution.
We have chosen this density as a suitable boundary condition
on the active layers which allow computation of the solution.

Similarly, it is not possible for the homogeneous stagnant lay-
ers to connect smoothly to reservoir densities in a time depend-
ent flow for either cases C1 or C2. A possible scenario is that
convection (which is not included in these simulations) is im-
portant. One might expect this to alter the solution to some ex-
tent, however in hydraulically controlled flows such as these the
solution is controlled at the throat of the contraction; so that the
most relevant quantity is the density which acts as a boundary
condition on the active layers there. For this reason the assumed
homogeneous stagnant layers produce a solution which closely
approximates the time dependent cases.

It may also be noted that the fast flowing layers do not match
reservoir conditions. In realistic flows it would be expected
that a transition to subcritical flow (probably via an internal
hydraulic jump) would occur. We have omitted this possibil-

ity by ignoring hydraulic jumps in the analytical solution, and
by setting the boundary conditions at the open boundaries of
the numerical solution to allow supercritical flow to pass out of
the model domain. Internal hydraulic jumps may well occur in
more realistic flows, however the presence of stagnant layers
means that the jump is insulated from the neighbouring active
layer.

Despite these unresolved issues, the solutions presented here
provide a simple resolution to a problem which has been as-
sumed in the past to be too complicated to address. The solu-
tions give useful and simple estimates for flux through a con-
traction in a channel between stratified reservoirs, and the prob-
lem can be solved analytically.
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