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Abstract 
An analytical solution is presented for the steady and purely 
tangential flow of a viscoelastic fluid obeying the simplified form 
of Phan-Thien-Tanner (PTT) constitutive equation in a concentric 
annulus with relative cylinder rotation. The effect of fluid 
elasticity and aspect ratio on the velocity profile and Ref  are 
investigated for two combinations of inner and outer cylinder 
rotation. The results show that the differences between the radial 
location of the minimum velocity and of the critical angular 
velocity compared with their Newtonian counterparts increase 
when the fluid elasticity increases. The results also show that 

Ref  decreases with increasing fluid elasticity and radius ratio in 
the case of inner cylinder rotation. 
Introduction    
An extensive bibliography of work on the flow of non-Newtonian 
liquids through annular channels is given in the recent paper by 
Escudier et al [1]. The flow of non-Newtonian fluids was studied 
in several works [2-6]. Cruz and Pinho [7] derived an analytical 
solution for helical flow within a concentric annulus of a fluid 
obeying the simplified form of the Phan-Thien-Tanner (SPTT) 
constitutive equation.    
The PTT model is a non-linear viscoelastic constitutive equation 
derived using network theory by Phan-Thien and Tanner [8]. A 
distinctive advantage of the PTT model over most of the other 
similar constitutive equations is the inclusion of an elongational 
parameterε . The flow of PTT viscoelastic fluids has been 
considered in several works by Oliveira and Pinho [9], Alves et 
al [10] and Hashemabadi et al [11].  
The objective of the present investigation is to obtain velocity 
profiles as well as the coefficient of friction using an analytical 
method to solve the simplified form of PTT model in purely 
tangential flow between concentric rotating cylinders where the 
inner and outer cylinders are rotating with different angular 
velocities, for a wide range of fluid elasticity and radius ratios.  
 
Mathematical Formulation 
We assume steady-state, laminar, purely tangential flow and 
neglect body forces in the momentum equation.  We then have: 
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Where rV , θV and zV are the radial, tangential and axial components 
of velocity profile, respectively. 
The dimensionless form of the momentum equation for the θ -
direction is: 
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The simplified form of the PTT constitutive equation is as 
follows: 
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Where η  is the viscosity coefficient of the model, λ  is the 

relaxation time, τtr  is the trace of stress tensor and )1(τ is the 
convected time derivative of stress tensor: 
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The stress coefficient, Z , has an exponential form: 
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Where ε  is the elongational parameter of the model. Eq. (5) may 
be linearized when the deformation rate of a fluid element is 
small which corresponds to the behaviour of weak flow 
according to Tanner’s classification [12]: 
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Exact solution for the simplified PTT model (SPTT)  
For steady tangential annular flow Eq. (3) reduces to: 
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Eq. (8) indicates 0=rrτ , hence the trace of the stress tensor will 
be equal to θθτ . Using Eq. (6) for the stress coefficient yields: 
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By dividing Eq. (9) by Eq. (7) the following for θθτ  is obtained: 
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The shear rate γ&  is obtained by substituting θθτ  from Eq.  (11) 
into Eq.  (7) and using Eq. (10) for the stress coefficient: 
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where the shear rate γ&  is defined by: 
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The dimensionless shear stress is obtained by integrating Eq. (2): 
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Where *
wiτ is the dimensionless wall shear stress on the inner 

cylinder and κ is inner to outer radius ratio (
oi / RR ). 

Combination of Eqs. (12) and (13)  leads to: 
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The following normalizations have been used in Eq. (15): 
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Where eW  is the Weissenberg number, δ  is the annular gap 

( io RR −=δ ) and cV  is a characteristic velocity which is defined 
as follows: 
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Where R  is the average radius ( 2/)R(R io+ ). By substitution of 
*
θτr from Eq. (14) into Eq. (15) and then integration of this 

equation, the dimensionless velocity profile is obtained, as 
follows: 
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The boundary conditions are as follows: 
                      Both                           Inner           Outer 
         0iiiii RRVRr ΩΩ== θ       (19) 
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 and in dimensionless form: 
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Where β  is the outer to inner angular velocity ratio )/( io ΩΩ . By 
introducing boundary conditions from Eqs. (21) and (22) into Eq. 
(18), and after mathematical simplification, the following cubic 
equation is obtained:    

                                 0qp *3* =++ iwiw ττ                         (23) 
Where the constants p  and q  in Eq. (23) for the cases of both 
cylinder rotation, inner cylinder rotation and outer cylinder 
rotation are, respectively: 
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The real solution of Eq. (23) can be expressed as: 
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By introducing boundary conditions from Eq. (21) or (22) into 
Eq. (18) and using *

wiτ from Eq. (27), the second constant 
2C  can 

be easily obtained. 
For the limiting case of a Newtonian fluid ( 02 →eWε ), Eq. (18) 
reduces to: 
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By introducing boundary conditions from Eqs. (21) and (22) into 
Eq. (28), the following relations can be written to obtain *

wiτ and 

2C  for the cases of both, inner and outer cylinder rotation, 
respectively : 
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These results are in full agreement with previous work such as 
that of Mahmud and Fraser [13]. 
An important parameter in engineering calculations is the product 
of the friction factor and the Reynolds number.  In the present 
situation, the torque friction factor, f, can be defined as follows 
[14]: 
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and the rotational Reynolds number as  [6,14]: 
                                    ηδρ /Re cV=                                 (33) 
Using these definitions we can derive the following equations for 

the two special cases of inner and outer cylinder rotation ( iRef  

and oRef ): 
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Results and Discussion 
Velocity profiles are presented in figure 1, for different values of 
the angular velocity ratio ( β ). As represented in this figure, the 
velocity profile shows a minimum value within the annular gap 
for cββ > . The radial location of the minimum velocity can be 
determined from the following equation: 
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Figure 1. Effect of angular velocity ratio on velocity profile 
for 2.0=κ and 102=eWε . 
 
For the limiting case of a Newtonian fluid (i.e. 02 →eWε ), we 
arrive at the well-known (see e.g. [13]) result: 

                       )/()1( 2
min
* κββκ −−=r                     (40) 

 

 
Figure 2. Effect of fluid elasticity, 2eWε , on the radial location of 
minimum velocity for 5.0=κ . 
 
Figure 2, shows the location of minimum velocity ( *

minr ), 
normalized with the corresponding Newtonian values (according 
to Eq. (40)) as a function of the non-dimensional viscoelastic 
group ( 2eWε ). As can be seen, the departure from the Newtonian 
value increases with increasing fluid elasticity. 
As can be seen from figure 1, the velocity profile exhibits a 
minimum when β  is greater than a critical value ( cβ ) which 
satisfies the following inequality: 
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Figure 3, shows the critical value of the angular velocity ratio, 
cβ , normalized with the corresponding Newtonian value 

( )1/(2 22
, κκβ +=Nc ) as a function of the elasticity parameter 

( 2eWε ), for the various values of the radius ratio κ . 
 

 
Figure 3. Effect of fluid elasticity, 2eWε , and radius ratio (κ ) on critical 
angular velocity. 
 
For high values ofκ , i.e. for a narrow annulus, cβ  is only 
marginally different from the Newtonian value and is 
independent of elasticity for large value of 2eWε . For smaller 
radius ratios, for example 1.0=κ , the differences are about 50% 
at high Weissenberg number. 

 
Figure 4. Effect of fluid elasticity, 2eWε , on the velocity profile in the 
both cases of inner and outer cylinder rotation for 5.0=κ . 
 
Figure 4, shows the effect of fluid elasticity on the velocity profile 
for the two special cases of inner and outer cylinders rotation. As 
can be seen, by increasing fluid elasticity 2eWε the velocity profile 
differs from the Newtonian case, i.e. as the shear-thinning 
behaviour of the fluid increases. The viscosity function and shear-
thinning behaviour of a PTT fluid is discussed in detail by Pinho 
and Oliveria [15] and Alvez, et al [10]. 
The influence of the radius ratio on the velocity profile for the 
two special cases of inner cylinder rotation and outer cylinder 



 

rotation are shown in Figure 5. The results show that the profiles 
tend to take linear form with increasingκ . 

 
Figure 5 Effect of radius ratio on velocity profile in the both cases of 
inner and outer cylinder rotation for, 01.02=eWε . 
 
Figure 6, shows the effect of fluid elasticity on Ref which is 
normalized with the corresponding Newtonian value 
( )1(/4Ref ,i κκ +=N ) for the various radius ratios for the case of 
inner cylinder rotation 

 
Figure 6. Effect of fluid elasticity, 2eWε , and radius ratio (κ ) on the 

ratio of viscoelastic to Newtonian friction factor )Ref/Ref( N,ii . 

 
The decrease in Ref  with increasing elasticity is again 
attributable to the shear-thinning behaviour of the PTT fluid. As 
can be seen from this figure, as 2eWε  approaches zero the 

Ref values are in agreement with those for a Newtonian fluid [6 
and 14]. These features of polymeric fluid have been investigated 
experimentally by Escudier et al. [16]. Their results showed that 
increasing fluid elasticity decreases friction factor. The same 

conclusion will be achieved if we plot oRef  against 2eWε .  
  
Conclusion 
An analytical solution has been derived for the steady-state, 
purely tangential flow in a concentric annulus with relative 

rotation of the two cylinders of a viscoelastic fluid obeying the 
simplified form of the Phan-Thien-Tanner (PTT) constitutive 
equation. The results show that the difference between the radial 
location of minimum velocity and its corresponding Newtonian 
value increases when the fluid elasticity increases and that the 
same is true for the critical angular velocity. The results show 
that increasing the fluid elasticity increases the velocity gradient 
near the inner cylinder and so decreases the viscometric viscosity 
of the fluid (i.e. the fluid behaviour is increasingly shear-
thinning) and in consequence Ref . The results also indicate that 
increasing the radius ratio decreases Ref in the case of inner 
cylinder rotation. With increasing radius ratio the velocity profile 
tends to take a linear form. 
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