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Abstract 
A straightforward application of the new triple decomposition of 
the local relative motion near a point to 2D velocity fields is 
presented. Unlike the Cauchy-Stokes double decomposition of 
motion into a pure straining motion and a rigid-body rotation the 
triple decomposition of motion aims, moreover, at the extraction 
of an effective pure shearing motion. It results in a more detailed 
flow description as the third term is responsible for a specific 
portion of vorticity labelled "shear vorticity" and for a specific 
portion of strain rate labelled "shear strain rate". 
 
Introduction 
The concept of the triple decomposition of motion has been 
motivated by a longstanding problem of a vortex and vorticity 
expressed by the fact that "solely vorticity cannot distinguish 
between swirling motions and shearing motions", Kida and 
Miura [1] (this fact is emphasized also by Jeong and Hussain [2] 
and Cucitore, Quadrio and Baron [3]). Let us add an analogous 
statement for strain rate: "solely strain rate cannot distinguish 
between straining motions and shearing motions". Vorticity and 
strain rate reflect the conventional Cauchy-Stokes decomposition 
of the local relative motion near a point into two elementary 
homogeneous motions: a pure irrotational straining motion along 
principal axes of the rate of strain tensor (generally including a 
uniform dilatation) and a rigid-body rotation. In Kolář [4] an 
arbitrary instantaneous state of the local relative motion near a 
point is decomposed into three elementary motions–each 
described by an additive part of u∇  with a distinct tensor 
character–explicitly including an effective pure shearing motion. 
The first two elementary parts of the proposed triple 
decomposition remind, at least in tensor character, the two 
elementary parts of the conventional double decomposition, 

, and represent their residual portions after extracting 
an effective pure shearing motion. 
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Triple Decomposition of Motion 
The algorithm of the triple decomposition of motion is briefly 
summarized below. For details, justification and discussion see 
Kolář [4] where three elementary motions are introduced in terms 
of a virtually structured continuum. The triple decomposition of 
the local relative motion near a point aims, basically, at the 
extraction of an effective pure shearing motion. It reads 
                        (1) ( ) ( ) ( )SHRREL uuuu ∇+∇+∇=∇
where the three elementary homogeneous motions are described 
by additive parts of : a pure irrotational straining motion 
given by symmetric tensor  (subscript "EL" reminds the 
term "elongation"), a rigid-body rotation given by antisymmetric 
tensor , and an effective pure shearing motion 

u∇
( )ELu∇

( )RRu∇ ( )SHu∇  
described below. 
   A general pure shearing motion (that is, at this stage, without 
specification of the term "effective") is defined by a "purely 
asymmetric tensor form" of  fulfilling in a suitable reference 
frame (null tensors are excluded, the subscript /j denotes 
differentiation) 
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   The desired reference frame, showing an effective pure shearing 
motion "in a clearly visible manner" described by the form (2), is 
called a basic reference frame (BRF). In this frame, the local 
relative motion is decomposed in terms of additive parts of u∇  
at a given point. In any other frames rotated with respect to the 
basic reference frame under an orthogonal transformation Q, an 
arbitrary elementary part of , say A, is described simply by 
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   The triple decomposition then reads in the BRF (specified 
afterwards) 
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( )[ ] ( )[ ]BRFBRF  of overhangtensor  of coretensor uu ∇+∇=  
( ) ( )[ ] ( )SHRREL uuu ∇+∇+∇=  (4) 

where (using simplified notation) subscripts x, y, z stand for 
spatial partial derivatives, and the remaining two non-specified 
pairs of off-diagonal terms in the first matrix of the 
decomposition are constructed strictly analogously as the 
specified one. The introduced frame-dependent tensor-core 
matrix is characterized by the symmetry in absolute values of 
components. This matrix determined above in the BRF is further 
decomposed into two parts as it represents a sum 
( ) ( )[ ]RREL uu ∇+∇ . Note that each pair of off-diagonal terms of 

the tensor-core matrix is either symmetric or antisymmetric. The 
introduced frame-dependent tensor-overhang matrix has a purely 
asymmetric tensor form defined by (2) and represents in the BRF 
an effective pure shearing motion. 
   The BRF is determined from the condition 

           ( )[ ] frames allover  MIN of coretensor BRF =∇u  (5) 

where the symbol ...  denotes a standard tensor norm (frame-
independent absolute tensor value). Alternatively, in terms of the 
Cauchy-Stokes double decomposition of  (e.g. Truesdell and 
Toupin [5], Batchelor [6]) 

u∇

             ( )( ) ( )( ) ΩSuuuuu +≡∇−∇+∇+∇=∇ TT

2
1

2
1 , (6) 

the BRF is determined from the condition 



 

    [ ] frames allover  MAX
BRF

131332322121 =++ ΩSΩSΩS . (7) 

It is clearly seen from (7) that the BRF, unlike the system of 
principal axes of S, is determined simultaneously on the basis of 
a non-zero S and a non-zero Ω. 
   Further, from the viewpoint of the double decomposition the 
effective pure shearing motion  itself (i.e. separately) 
represents a certain coupling of a pure irrotational straining 
motion with a rigid-body rotation. Consequently, the triple 
decomposition of  may be substituted by the quadruple 
decomposition of  with two different (symmetric) strain-rate 
terms and two different (antisymmetric) vorticity terms 
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These four terms (in the last two square brackets) are labelled 
"residual strain rate" and "shear strain rate", "residual vorticity" 
and "shear vorticity". Note that in the triple decomposition, S and 
Ω are cut down in magnitudes to "share" their portions through 
the third term  associated with a pure shearing motion as ( )SHu∇

                          ( )SHRESRES uΩSu ∇++=∇ . (9) 
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Triple Decomposition of Motion in 2D Fluid Flow 
The nature of the proposed triple decomposition (and its physical 
justification) is straightforward in 2D fluid motion. To make the 
decomposition of motion clearly visible, the conventional double 
decomposition frequently uses as a reference frame the shear-
free frame of principal axes of the strain-rate tensor. A uniform 
dilatation can be removed prior to further analysis of u∇  
without loss of generality and an arbitrary 2D flow can be 
described (using simplified notation) in the system of principal 
axes by the form 

                     . (10) 
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By a suitable rotation of coordinate axes we approach the desired 
BRF. For 2D rotational motion, the BRF corresponds to the shear 
frame in which the deviatoric strain-rate tensor has zeros on the 
leading diagonal and  is given by u∇

                           . (11) 
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In this frame, in the plane of 2D motion, there are only two 
characteristic "shearing interactions" of  with  
namely with the same or opposite rotational orientations, see Fig. 
1. For both orientations, the magnitude of the resulting 
"superimposed" pure shearing motion is given simply by the 
difference of absolute values of  and . 

yu yd xvxd ,
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   The present new approach is easy to demonstrate geometrically 
in 2D fluid motion in terms of the decomposition of vorticity ω 
and strain rate s, see (10), (11), as shown in Fig. 1. In this figure 
the vorticity and strain-rate components are proportional to the 
infinitesimal changes of related characteristic angles during the 
infinitesimal change of time. In Fig. 1(a) the characteristic angles 
correspond to the residual vorticity  (associated with the 

rigid-body rotation) and shear vorticity  (associated with the 
RESω

SHω

 
Figure 1 Geometrical interpretation of the triple decomposition in 2D 
fluid motion: (a) vorticity components,  (b) strain-rate components. 
 
pure shearing motion) while their sum is proportional to the total 
vorticity ω. In Fig. 1(b) the characteristic angles correspond to 
the residual strain rate  and shear strain rate  while 
their sum is proportional to the total strain rate s. This 
"superimposing" geometrical construction is of virtual nature and 
applicable to infinitesimal motional changes only. However, it 
provides a clear qualitative insight and interpretation of the 
vorticity and strain-rate components. 
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   Fig. 1 indicates two significant inherent features of the 
proposed decomposition. Firstly, the concept of the triple 
decomposition as defined by (4) implies (generally in 3D) that 
the corresponding components of the residual vorticity and shear 
vorticity have the same signs in the BRF. The same holds for the 
residual strain rate and shear strain rate. Secondly, Fig. 1 
indicates a certain "principle of exclusivity" which is valid in 2D. 
The principle of exclusivity may be expressed for arbitrary 2D 
velocity fields representing an isochoric part of motion as 
                    ( ) ( ) 0u0u =∇=∇ 2D

RR
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or, alternatively, in terms of ω and s as 
                              . (12b) 00 RESRES == ωORs
The expressions (12a, b) say that a non-zero residual vorticity 
apparently existing only for the same rotational orientations of 

 and , see Fig. 1, excludes the existence of a non-zero 
residual strain rate existing only for the opposite rotational 
orientations of  and . Consequently, Fig. 1(a) 
represents an inevitable reduction of the three distinct terms of 
the triple decomposition to the form 
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( ) ( )SHRR uu ∇+∇  while 

Fig. 1(b) represents the reduction to . ( ) ( )SHEL uu ∇+∇
   Components of the triple decomposition of the local relative 
motion near a point and corresponding flow patterns for various 
flow situations in 2D isochoric fluid motion are shown in Fig. 2. 
All possible flow configurations near a point for fixed  and 

variable  are depicted in the corresponding BRFs. The points 
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Figure 2 Components of the triple decomposition of motion and flow patterns for various flow situations in 2D fluid motion.

itself can be described as critical points and the local flow 
patterns correspond to the leading terms of a Taylor series 
expansion for the velocity field in terms of space coordinates 
(Perry and Chong [7], Chong, Perry and Cantwell [8]). 
 
Application of the Triple Decomposition of Motion 
to 2D Velocity-Field Analysis 
Let us remind that a uniform dilatation can be removed prior to 
further analysis of  without loss of generality and 
applicability to compressible flows. In terms of s and ω 
introduced in (10) and (11) by a suitable rotation of coordinate 
axes 

u∇
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and their residual and shear components (note that these are of 
the same signs in the BRF) we can draw from (4) and (8) the 
following set of relations 
                                      , (15) SHRES sss +=

                                   SHRES sss += , (16) 

                        ( ) ωω >= sforss sgnSH , (17) 

                               ω<= sforssSH , (18) 

                         ω>−= sforsss SHRES , (19) 

                      ω<=−= sforsss 0SHRES , (20) 

                                    , (21) SHRES ωω +=ω

                                 SHRES ωω +=ω , (22) 

                             ωω >= sforωSH , (23) 

                        ( ) ωω <= sforsω sgnSH , (24) 

                    ωω >=−= sforωω 0SHRES , (25) 

                       ωω <−= sforωω SHRES . (26) 
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Figure 3 Comparison of (a) total vorticity and (b) residual vorticity for plane turbulent wake (velocity data taken from [9], phase 3, contour int. 0.2). 

   The case ω=s  represents a simple shear, hence an effective 
pure shearing motion is the only non-zero component of the triple 
decomposition of motion in this case. 
   A practical application of the present approach to the velocity 
data of the nominally plane turbulent wake of two side-by-side 
square cylinders by Kolář, Lyn and Rodi [9] is shown in Fig. 3. 
   It is clearly seen from Fig. 3 that by removing the shearing 
component of motion, that is after the extraction of an effective 
pure shearing motion by means of the triple decomposition of 
motion, we reach a more adequate picture of vortical structures. 
These structures are characterized exclusively by swirling motion 
in terms of the residual vorticity which is non-zero for ω<s  
and determined from (24) and (26) using (13) and (14). The 
residual vorticity appears as the proper kinematic quantity to 
identify true vortex cores determining both their boundary and 
inner structure. 
   Similarly we can distinguish the residual strain rate from the 
total strain rate, for example, while describing the process of 
turbulence production in the saddle regions of the primary large-
scale vortical structures in turbulent wakes. 
 
Conclusions 
2D flow fields have been described in terms of the new triple 
decomposition of the local relative motion near a point. The triple 
decomposition of motion aims at the extraction of an effective 
pure shearing motion which is responsible for a specific portion 
of vorticity labelled "shear vorticity" and for a specific portion of 
strain rate labelled "shear strain rate". The triple decomposition 
of motion is closely associated with the so-called basic reference 
frame (BRF) where it is performed. Some fundamental issues 
have been pointed out: (i) principle of exclusivity holds between 
2D residual vorticity and 2D residual strain rate for an isochoric 
part of motion, (ii) residual and shear components of both 
vorticity and strain rate have the same signs in the BRF. 
Considering arbitrary 2D velocity fields, simple relations have 
been derived for vorticity and strain-rate components. 

   The kinematic structure inferred from the triple decomposition 
of motion should help in the description and analysis of a wide 
variety of fluid-dynamical processes and fluid-flow phenomena. 
It may prove its usefulness for flow classification schemes as 
well as for complex rheological problems. 
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