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Abstract

The effect of uniform rotation on the onset of steady and oscil-
latory surface-tension-driven (Marangoni) convection in a hori-
zontal fluid layer heated from below is considered theoretically.
The theoretical analysis follows the usual small-disturbance ap-
proach of perturbation theory and leads, at the marginal state, to
a functional relation between the Marangoni and Taylor num-
bers which is then computed numerically. We present nu-
merically a necessary and sufficient condition for oscillatory
Marangoni convection to occur in a rotating fluid layer with a
deformable free upper surface.

Introduction

The onset of surface-tension-gradients-driven (Marangoni) con-
vection in a layer of fluid which is heated (or cooled) from
below is a fundamental model problem for several material
processing technologies, such as semiconductor crystal growth
from melt, in the microgravity environment of space. As
Schwabe [8] describes, typically in microgravity surface ten-
sion rather than buoyancy forces are the dominant mechanism
driving the flow. In general, convection appears when a certain
dimensionless parameter exceeds a critical value. This param-
eter is a Rayleigh number when the convection is induced by
buoyancy effects due to variations in density and is a Marangoni
number when surface-tension variations induce the convection.

In his pioneering work Pearson [6] showed that variation of
surface tension with temperature will drive steady Marangoni
convection in a fluid layer provided that the non-dimensional
Marangoni number,M, (defined in the next Section) is suffi-
ciently large and positive. Since for most fluids surface tension
decreases with increasing temperature, this means that steady
convection only occurs when the layer is heated sufficiently
strongly from below. The most significant limitation of Pear-
son’s [6] work was that it considered only the case of a non-
deformable free surface, corresponding to the limit of strong
surface tension. Scriven and Sternling [9], Smith [10] and
Takashima [11] extended Pearson’s [6] analysis by considering
the effect of free surface deformation on the onset of steady
convection and found that it dramatically destabilises the long
wavelength modes. Vidal and Acrivos [14] and Takashima [12]
showed numerically that oscillatory Marangoni convection is
impossible when the free surface is non-deformable.

All of the work mentioned above excluded the effect of rota-
tion of the fluid layer. The effect of rotation on Benard convec-
tion was first studied by Chandrasekhar [1]. Vidal and Acrivos
[13] analysed the effect of rotation on Marangoni convection.
McConaghy and Finlayson [4] re-examined Vidal and Acrivos’
[13] conclusion on the possibility of oscillatory convection.
Namikawaet al. [5] studied the case when both buoyancy and
surface tension forces act together to cause the instability. Kad-
dame and Lebon [2, 3] investigated the onset of steady and os-
cillatory Benard-Marangoni convection with rotation.

In this work we use the classical linear stability theory to study
the effect of rotation on the marginal curves for the onset of
steady and oscillatory Marangoni convection. In particular, we
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Figure 1: Sketch of the one-layer model.

show how thePr -Ta (where the Prandtl numberPr and the Tay-
lor numberTa are defined in the next Section) parameter space is
divided into domains in which steady or oscillatory convection
is preferred, and in so doing we extend the work of Kaddame
and Lebon [3].

Mathematical Formulation

We wish to examine the stability of a horizontal layer of quies-
cent fluid of thicknessd which is unbounded in the horizontal
x- andy-directions. The layer is kept rotating uniformly around
a vertical axis with a constant angular velocityΩ. The layer is
bounded below by a thermally conducting planar boundary and
above by a free surface, subject to a uniform vertical tempera-
ture gradient (see figure 1).

The fluid is Boussinesquian with a mass densityρ assumed to
vary linearly on the temperature

ρ = ρ0[1−α1(T −T0)], (α1 > 0), (1)

whereα1 is the volume expansion coefficient andT0 a reference
arbitrary temperature. The variations of surface tensionγ with
the temperatureT is assumed in the form

γ = γ0− τ(T −T0), (2)

whereγ0 is a reference value of surface tension andτ is the
rate of change of surface tension with the temperature. The
deformation of the interface is represented by the relation

z= d+η(x,y, t), (3)

whereinη(x,y, t) is ana-priori unknown deformation with re-
spect to the mean thicknessd. In the reference state, the fluid is
at rest with respect to the rotating axes and heat propagates only
by conduction. When motion sets in, the velocityv = (u,v,w),
pressurep and temperatureT fields obey the usual balance
equations of mass, momentum and energy (cf. Chandrasekhar
[1]),

∇ ·v = 0, (4)

ρ0

[

∂v
∂t

+(v ·∇)v+2Ω×v
]

= −∇p+µ∇2v−ρgez, (5)

∂T
∂t

+(v ·∇)T = κ∇2T, (6)

whereg = (0,0,−g) is the gravitational field,ez = (0,0,1) is a
unit vector in thez-direction,µ is the viscosity,κ is the thermal



diffusivity and∇2 = ∂2/∂x2+∂2/∂y2+∂2/∂z2 is the Laplacian
operator.

At the deformably free surface,z = d + η(x,y, t), the bound-
ary conditions comprise of the kinematic, the heat flux, the two
shear stress and the normal stress conditions which are given
by, respectively,

∂η
∂t

+u
∂η
∂x

+v
∂η
∂y

= w, (7)

k∇T ·n+hT = 0, (8)

2µDnt =
∂γ
∂T

∇T · t, (9)

(pa− p)+2µDnn = γ∇ ·n, (10)

whereh is the heat transfer coefficient,k is the thermal conduc-
tivity of the fluid, pa is the pressure of the atmosphere,Di j is the
rate of strain tensor,t andn denote tangential and normal unit
vectors, respectively. At the isothermal lower, rigid and plane,
boundary we have the no-slip condition.

We introduce infinitesimal disturbances to the governing equa-
tions and boundary conditions by setting

(u,v,w, p,T) = (0,0,0, p̄, T̄)

+(u′,v′,w′, p′,θ′), (11)

where the barred quantities are the basic state solutions and
primed quantities represent the perturbed variables. A set of
scalesd, d2/κ, ∆T is chosen for distance, time and temper-
ature, respectively. The perturbed quantities in normal mode
forms are
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E






ei(axx+ayy)+σt , (12)

whereax anday are wavenumbers of disturbances in thex andy
directions, respectively.W, Θ, K andE are amplitudes of verti-
cal velocity, temperature, vertical vorticity and deflection of the
free upper surface, respectively. The growth parameterσ is in
general a complex variable denoted byσ = σr + iσi , whereσr
is the growth rate of the instability andσi is the frequency. If
σr > 0, the disturbances grow and the system becomes unstable.
If σr < 0, the disturbances decay and the system becomes sta-
ble. Whenσr = 0, the instability of the system, at the marginal
state, sets in stationarily, provided (σi = 0), or oscillatorily, pro-
vided (σi 6= 0).

The governing equations of the perturbed state in dimensionless
forms, assuming the Boussinesq approximation, are

(D2−a2)(D2−a2−σP−1
r )W−T∗

a DK = a2R∗Θ, (13)

(D2−a2−σP−1
r )K = −DW, (14)

(D2−a2−σ)Θ = −W, (15)

subject to

W−σE = 0, (16)

C∗
r [(D2−3a2−σP−1

r )DW−T∗
a K]

−a2(a2 +B∗
o)E = 0, (17)

(D2 +a2)W+a2M∗(Θ−E) = 0, (18)

DΘ+B∗
i (Θ−E) = 0, (19)

DK = 0, (20)

evaluated on the undisturbed position of the upper free surface
z= π, and

W = Θ = K = DW = 0, (21)

evaluated on the lower rigid boundaryz = 0, where the oper-
ator D = d/dz denotes differentiation with respect to the ver-
tical coordinatez anda = (a2

x + a2
y)

1/2 is the horizontal wave
number of the disturbance. The starred dimensionless num-
bers are defined byR∗ = R/π4,M∗ = M/π2,T∗

a = Ta/π4,C∗
r =

πCr ,B∗
i = Bi/π,B∗

o = Bo/π2, where the Rayleigh number,R=

αg∆Td3/νκ, whereν is the kinematic viscosity, the Marangoni
number,M = γ∆Td/ρ0νκ, the Taylor number,Ta = 4Ω2d4/ν2,
the capillary number,Cr = ρ0νκ/γ0d, the Biot number,Bi =
hd/k, the Bond number,Bo = ρgd2/γ, and the Prandtl num-
ber,Pr = ν/κ. The Rayleigh numberR accounts for buoyancy
destabilising effect. The numberM accounts for surface ten-
sion destabilising effect. The Taylor numberTa represents the
square of the ratio between Coriolis and frictional forces. The
capillary numberCr shows an idea of the rigidity of the upper
free surface of the fluid layer. The Biot numberBi represents the
heat flux flow through the interface, and the physical parameter
Bond numberBo is the ratio between gravity effect in keeping
the surface flat and the effect of surface tension in making a
meniscus. The Prandtl number,Pr , stands for the ratio between
thermal and heat diffusivities.

Solution of the Linearised Problem

Combining equations (13)–(15) then gives a single linear
eighth-order ordinary differential equation forΘ,

(D2−a2−σ)
[

(D2−a2)(D2−a2−σP−1
r )2 +T∗

a D2
]

Θ

+a2R∗(D2−a2−σP−1
r )Θ = 0. (22)

Equation (22) together with the boundary conditions (16)–(21)
constitute a linear eigenvalue problem for the unknown tempo-
ral exponentσ. Relation (17) gives the expression for the sur-
face deflectionE in terms of the other quantities. In the general
caseσ 6= 0 we seek solutions in the forms

W(z) = ACeξz, K(z) = BCeξz, Θ(z) = Ceξz, (23)

where the complex quantitiesA, B andC and the exponentξ are
to be determined. Substituting these forms into the equations
(13)–(15) and eliminatingA, B andC we obtain an eighth-order
algebraic equation forξ, namely

(ξ2−a2−σ)
[

(ξ2−a2)(ξ2−a2−σP−1
r )2 +T∗

a ξ2
]

+a2R∗(ξ2−a2−σP−1
r ) = 0, (24)

with eight distinct rootsξ1, . . . ,ξ8. Denoting the values ofA, B
andC corresponding toξi for j = 1, . . . ,8 by A j , B j andCj we
can use equations (14) and (15) to determineA j andB j to be

A j = −(ξ2
j −a2−σ), B j = −

ξ jA j

ξ2
j −a2−σP−1

r
, (25)

for j = 1, . . . ,8. The boundary conditions (16)–(21) can be used
to determine the eight unknownsC1, . . . ,C8 (up to an arbitrary
multiplier), and the general solution to the stability problem is
therefore

W(z)=
8

∑
j=1

A jCje
ξ j z, K(z)=

8

∑
j=1

B jCje
ξ j z, Θ(z)=

8

∑
j=1

Cje
ξ j z.

(26)
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Figure 2: Numerically-calculated marginal curves for the onset
of steady Marangoni convection plotted as functions ofa in the
caseCr = 0 andBi = 0 for several values ofTa.

Imposing boundary conditions (16)–(21) yields a linear system
PA = 0, whereA = [A1, . . . ,A8]

T . In general, the 8×8 coeffi-
cient matrix P (whose entries depend ona, M, R, σ, Cr , Ta, Pr ,
Bo andBi) is complex and may be rather complicated, and so,
in general, it has to be calculated either numerically or symbol-
ically using a symbolic algebra package. In this work we use
both approaches. We use a FORTRAN 77 program employ-
ing the Numerical Algorithms Group (NAG) routine F03ADF
to evaluate the determinant of P using LU factorisation with par-
tial pivoting. A modification of Powell’s [7] hybrid algorithm,
which is a combination of Newton’s method and the method of
steepest descent, implemented using NAG routine C05NBF is
then used to find the eigenvalues of P by solving the two non-
linear equations obtained from the real and imaginary parts of
the determinant of P.

Marginal Stability Curves

In this work we shall concentrate on the problem of the onset of
steady and oscillatory Marangoni convection, i.e. we setR= 0.
The marginal stability curves in the(a,M) plane on whichσr =
0 separate regions of unstable modes withσr > 0 from those of
stable modes withσr < 0. The critical Marangoni number for
the onset of convection is the global minimum ofM overa≥ 0.

For steady convection (σ = 0), the dispersion relation
F(a,M,Cr ,Ta,Bo,Bi) = 0 takes the linear formD1 +MD2 = 0,
whereD1 andD2 are two 6×6 determinants which depend on
the whole set of parameters of the problem exceptM. Given
any set of values forR,Ta,Cr ,Bi ,Bo, we can determine the
Marangoni number as a function of the wave numbera.

Figure 2 shows typical marginal stability curves for the onset of
steady Marangoni convection for various values of the Taylor
numberTa in the case when the free surface is undeformable,
Cr = 0, and insulating,Bi = 0. In this case the problem is inde-
pendent ofBo. As a validation of our algorithm we found that
asTa → 0 the marginal curves tend to that obtained by Pearson
[6] for the pure Marangoni problem without rotation,Ta = 0.
Figure 2 clearly shows that in the cases investigated the effect
of rotation is to stabilise the layer. Rotation introduces vorticity
into the fluid which then causes the fluid to move in the hori-
zontal planes with higher velocity. The velocity of the fluid per-
pendicular to the planes reduces, thus the onset of convection is
inhibited (Chandrasekhar [1]).

While in practice the value ofCr may be very small (for a 1 cm
layer of water open to air at 20o C we haveCr ∼ 10−7) it will
inevitably be non-zero. Figure 3 shows typical marginal stabil-
ity curves for the onset of steady Marangoni convection for a
range of values ofTa for Cr = 0.001,Bo = 0.1 andBi = 0. As
shown in figure 3 the marginal curves can have a local minimum
value ata= 0. There exists a critical Taylor number, sayTac be-
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Figure 3: Numerically-calculated steady marginal curves for the
onset of Marangoni convection plotted as functions ofa in the
caseCr = 0.001,Bo = 0.1 andBi = 0 for several values ofTa.
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Figure 4: Numerically-calculated steady marginal curves for the
onset of Marangoni convection plotted as functions ofa in the
caseTa = 100,Bo = 0.1 andBi = 0 for several values ofCr .
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Figure 5: Numerically-calculated steady marginal curves for the
onset of steady (solid) and oscillatory (dashed) Marangoni con-
vection plotted as functions ofa in the caseCr = 0, Ta = 5000,
Bo = 0.1 andBi = 0 for several values ofPr .

low which the onset of convection is ata = 0 and above which
the onset of convection is ata = O(1). More interesting is the
case whenTa = Tac in which a competition between two differ-
ent modes is possible. If the free surface is allowed to deform
(Cr 6= 0) then the marginal stability curves differ fundamentally
from those in the caseCr = 0 in the regiona � 1 and depend
critically onTa as depicted in figure 4. In the cases investigated
in figure 4 variations inCr has a minute effect on the marginal
curves asa gets bigger.

Kaddame and Lebon [3] showed that convection can set in as
oscillatory (σ 6= 0) motions for the case when the free surface
is flat, but no complete marginal curves were given. In figure 5
we plot both steady and oscillatory marginal curves in the case
Ta = 5000,Cr = 0, Bo = 0.1 andBi = 0 for several values of
Pr . There exists a certain critical value ofPr = Pr c (depending
on the other problem parameters) below which the onset of con-
vection is oscillatory. In figure 6 we plotPr c as a function ofTa
in the caseBo = 0.1 andBi = 0 for several values ofCr . Each
curve in figure 6 defines the boundary between the steady and
oscillatory domains. Points below each curve in figure 6 rep-
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Figure 6: Numerically-calculated critical values ofPr below
which oscillatory convection is prefered plotted as functions of
Ta in the caseBo = 0.1 andBi = 0 for several values ofCr .

resent parameter combinations(Ta,Pr c) for which convection
sets in as oscillatory motions, while points above each curve
are those for which oscillatory convection is preferred. In the
cases investigated, for a fixed value ofTa, increasingCr has the
effect of increasingPr c.

Conclusions

In this work we used classical linear stability theory to inves-
tigate the effect of rotation on the onset of steady and oscilla-
tory Marangoni convection in a horizontal planar layer of fluid
heated from below. The results showed the stabilising effect of
the rotation and the possibility of the co-existence of two differ-
ent modes at the onset of convection. In particular, we showed
how thePr -Ta parameter space is divided into domains in which
steady or oscillatory convection is preferred.
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